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Executive Summary 
This report summarizes the work done in Subtask 10.2.1, that aims at increasing the 

useful on-Sun experimental time available to RI users during their stay, by providing 

accurate intrahour forecasts of direct normal irradiance (DNI). 

A hybrid intrahour forecast model has been developed, combining knowledge-based 

and machine-learning approaches and taking DNI measurements and HDR sky 

images as inputs. The results show that this algorithm is capable of outperforming 

the smart persistence model, as well as machine-learning-based models using past 

DNI observations only, for various forecast horizons.  

The work has lead to several scientific publications listed below.  

 [PhD thesis] Y. Karout. Prévision de l’éclairement normal direct par intelligence 

artificielle et commande prédictive d’un réacteur solaire. PhD thesis, 

Université de Perpignan Via Domitia, Dec. 2022. 

 [Conference 1] Y. Karout, S. Thil, J. Eynard, and S. Grieu. Cloud/sky 

segmentation from ground camera based on supervised machine learning 

approach. In 33rd International Conference on Efficiency, Cost, Optimization, 

Simulation and Environmental Impact of Energy Systems (ECOS 2020), 

Osaka, Japan, July 2020. 

 [Conference 2] Y. Karout, A. Curcio, J. Eynard, S. Thil, S. Rodat, S. Abanades, 

and S. Grieu. Model-based predictive control of a solar reactor dedicated to 

syngas production. In 28th International Conference on Concentrating Solar 

Power and Chemical Energy Systems (SolarPACES 2022), 2022. 

 [Conference 3] Y. Karout, S. Thil, J. Eynard, E. Guillot, and S. Grieu. Intrahour 

direct normal irradiance forecasting based on sky image processing and time-

series analysis. In 28th International Conference on Concentrating Solar 

Power and Chemical Energy Systems (SolarPACES 2022), 2022. 

 [Article 1] Y. Karout, S. Thil, J. Eynard, E. Guillot, and S. Grieu. Hybrid 

intrahour DNI forecast model based on DNI measurements and sky-imaging 

data. Solar Energy, 249:541–558, Jan. 2023. 
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1. Introduction 
The main approaches to forecast direct normal irradiance (DNI) are statistical models, 

image-based models, and numerical weather prediction (NWP) models. Each 

approach is characterized by a range of spatio-temporal horizons. Statistical models 

can provide forecasts with high temporal resolutions and for long forecast horizons, 

but they are limited by low spatial capabilities. On the other hand, the NWP models, 

that solve weather equations to forecast irradiance, are characterized by very high 

spatio-temporal capability and are capable of handling high forecast horizons, but 

are highly dependent on the initial state of the variables used in the equations (which 

in turn requires accurate measurements with specific sensors that must be 

distributed wisely) and demand important computational resources for low forecast 

resolutions. Finally, image-based models provide high spatio-temporal resolution 

with less computational requirements compared to the NWP models (the complexity 

of image-based models depends on the code optimization and the type of algorithms 

implemented in the image processing steps). 

As this task is interested in intrahour DNI forecasting, the focus is on statistical and 

ground-based sky imagery models. 

A hybrid forecast model is proposed, that can harness the advantages of both 

approaches. This model is compared to the smart persistence model and two 

machine-learning-based models using only past DNI observations as input. 
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2. DNI and sky images database 
The first action in this task was to select a sky imager delivering high-quality images. 

The chosen sky imager provides HDR images with a 1300x1216 effective resolution 

and was installed at the Odeillo solar furnace (Figure 1). 

 

Figure 1. Sky imager at Odeillo solar furnace. 

A database of HDR sky images (collected each 30 seconds, using the sky imager 

above) and DNI measurements (collected each second, using a PROMES-CNRS 

pyrheliometer) has then been constituted. The quality of the data is crucial, since 

machine learning methods are used to forecast DNI. Compared to the usually-used 

low dynamic range images, HDR images have the distinct advantage of being less 

saturated in the circumsolar area, thus providing additional and important 

information. This is especially important for short forecast horizons, since we then 

need to examine parts of the image closer to the Sun. Examples of HDR images taken 

with the sky imager are given in Figure 2.  
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Figure 2. Example of HDR sky images. 

At the time the work was made, the database contained more than a year of DNI 
and sky image data (373 days), but it is still being updated. 
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3. Reference forecasting models 
In addition to the widely used smart persistence model, the proposed hybrid 

forecasting model is compared to two machine-learning-based algorithms using 

historical DNI data only, to assess the usefulness of incorporating sky images in the 

forecasting process. 

3.1. Persistence model 
This model is based on the simple supposition that DNI is not going to change over 

the considered forecast horizon �: 

 

Even though it is an extremely naïve approach, the persistence model gives very good 

results when the forecast horizon is low. Of course, this model's performance 

degrades as the forecast horizon increases and when DNI presents high variability. 

3.2. Smart persistence model 
The persistence model can be improved by The DNI can be decomposed into two 

components: 

 

Where ����� is the clear-sky DNI (the DNI value that would be obtained if the sky was 

clear), and ��  is the clear-sky index, that translates the attenuation due to 

atmospheric disturbances. The smart persistence model is based on the supposition 

that the clear-sky index is constant over the forecast horizon. Therefore, the DNI 

forecast is obtained as: 

 

The smart persistence model thus needs clear-sky DNI forecasts, which are provided 
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by a clear-sky DNI model. Many clear-sky models exist, among which the model 

developed in [Nou-2016a] has been chosen due to its high accuracy and adaptive 

nature. 

3.3. Machine-learning-based models 

3.3.1. LSTM model 
The first proposed model is based on a long short-term memory (LSTM) network. It 

consists of multiple layers of LSTM units, followed by a fully connected layers 

combining the output of the LSTM layers, to perform the forecast (see Figures 3 and 

4). The LSTM units are used to face both the common exploding-gradient and 

vanishing-gradient problems, and can be divided into three main parts: the ‘forget 

gate’, responsible for the portion of data to be ignored; the ‘input gate’, which updates 

the status of the unit; finally, the ‘output gate’, that determines the current hidden 

state used for the computation of the unit's status during the next time step. 

p 

Figure 3. Above: a LSTM unit defined by its three main gates (forget, input, 
and output gates). Below: an unfolded time-looped LSTM unit. 
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Figure 4. LSTM model structure, with LSTM layers followed by fully connected 
layers, taking past DNI observations as time-support, and providing a DNI 

forecast at horizon H. 

3.3.2. CNN-LSTM model 
The second proposed model is a convolutional neural network / long short-term 

memory (CNN-LSTM) network, consisting of a convolutional layer, serving as a 

preprocessing step to extract features to facilitate DNI forecasting, LSTM layers and 

fully connected layers (see Figure 5). This type of network is used when there is a 

spatial structure in the input, as in an image, or when there is a temporal structure 

in the input, such as a sequence of images (video) or values (time series). It can also 

be used when the output possesses a temporal structure, such as in multi-horizon 

time series forecast models. 
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Figure 5. CNN-LSTM model structure with a convolutional layer, LSTM layers, 
and fully connected layers, taking past DNI observations as time-support, and 

providing a DNI forecast at horizon H. 

3.3.3. Implementation of machine-learning-based 
models 
Both the LSTM and the CNN-LSTM networks are trained and validated using a 

cross-validation technique: the training dataset is randomly but equally divided into 

five groups of samples called folds; in each fold 70% of data is used for training and 

30% for validation. Adaptive moments (Adam), a computationally-efficient 

stochastic gradient descent optimization method based on an adaptive estimation of 

the momentum, is used. To prevent overfitting, dropout regularization is performed 

for each layer in the network with a rate of 50%. The loss function is chosen to be 

the mean squared error over the mean average error. Finally, the models are trained 

using 20 epochs for each fold where convergence is assured. 
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3.4. Proposed hybrid forecasting model 
The proposed hybrid forecasting model uses sky images to detect clouds and 

determine their motion, which permits to localize a region of interest (ROI). This ROI 

is supposed to interact with the Sun after the considered forecast horizon. After its 

localization, some features are extracted from the ROI and fed to a forecast model to 

provide DNI forecasts. The different components of the model, that can be seen in 

Figure 6. 

 

Figure 6. Global architecture of the proposed hybrid model, showing three 
main parts: image processing, clear-sky DNI forecast model, and DNI forecast 

model. 

3.4.1. Image processing 
This step is crucial in the DNI forecasting process, since the sky conditions should 

be accurately analysed to provide accurate forecasts. Image processing is used to 

extract information relevant to DNI forecasts. Figure 7 summarizes all the image 

processing steps leading to the extraction of features from the sky images: 

 the HDR images are treated to correct the fisheye lens distortion, 

 a low dynamic image is generated to be used in the cloud estimation method, 

 clouds are detected using a developed machine-learning-based model, 

 cloud motion is then estimated using the Farnebäck optical flow algorithm, 

 the cloud fraction in the ROI is calculated and fed to the DNI forecast model. 
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Figure 7. Image processing steps: distortion correction, cloud detection  and 
cloud motion estimation. The region of interest (ROI) is then located and the 

cloud fraction in the ROI is calculated. 

3.4.2. DNI forecast model 
As can be seen in Figure 8, the DNI forecast model that appears in Figure 6 is divided 

into three main parts. The first part, responsible for image feature extraction, is a 

convolutional neural network (CNN). The second part is a multi-layer perceptron 

(MLP) with the cloud fraction in the region of interest and the clear-sky DNI forecast 

as inputs. The outputs of the CNN and the MLP networks are then fed to a ‘Regression 

MLP’, used to merge extracted features and provide the DNI forecast.  

 

Figure 8. The three main parts of the DNI forecast model. 

The database used to train the neural networks consists of 40 days, each with 1200 

observations (sky images and DNI measurements) starting from 7:00 AM till 5:00 PM, 

with 30 seconds sampling time. This database is split into 22 days for training and 

cross-validation (representing 26400 observations), 16 days for testing (representing 

19200 observations), and two days for cases studies (representing 2400 

observations). The DNI forecast model is trained and validated using a cross-

validation technique: the dataset is randomly but equally divided into five groups of 

samples called folds; in each fold 70% of data is used for training and 30% for 
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validation. Adaptive moments (Adam), a computationally efficient stochastic gradient 

descent optimization method based on an adaptive estimation of the momentum, is 

used. To prevent overfitting, dropout regularization is performed for each layer in the 

network with a rate of 50%. After testing, the loss function is chosen to be the mean 

squared error over the mean average error. Finally, the models are trained using 20 

epochs for each fold in order to assure convergence. 

3.5. Forecasting results 

3.5.1. Performance metrics 

 The root mean squared error (RMSE) is calculated as follows: 

 

 The normalized root mean squared error (nRMSE) is calculated as follows: 

 

 The skill factor (SF) is employed to evaluate the models' performance versus 
the smart persistence model; it is defined as: 

 

where nRMSE� and ������� are the nRMSE of the proposed model and the 
smart persistence model, respectively. 

 The mean average error (MAE) is calculated as follows: 
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 Finally, a metric called the ramp detection index (RDI) is used. It is designed 
to evaluate the ability of the model to predict ramps, which have an important 
impact on CSP plants: predicting them can thus be helpful in the control 
process. First, the ramp magnitude (RM) is calculated as: 

 

Usually, high-magnitude ramps are defined by RM>0.5 and moderate ramps 
by 0.3<RM<0.5. A ramp detection (also called a hit) is achieved if both the 
following conditions are satisfied: 

 

The ramp is not detected (a miss) if the first equation above is met while the 
second is not. Finally, the RDI is calculated as: 

 

where ���� and ����� are the numbers of hits and misses, respectively. 

3.5.2. Comparison of forecasting results 
In this section, the hybrid model is compared to the reference models: smart 

persistence and machine-learning-based models using past DNI observation only. 

First, the models’ performance on clear-sky, overcast, and mixed situations are 

compared. Then, two cases with different DNI variability are studied to gain more 

insight on the accuracy and performance of the hybrid model. 

3.5.2.1. Global comparison 

The forecasting results, in case of mixed situations, can be found in Figure 9: the 

hybrid model scores the lowest nRMSE values and the highest SF and RDI for each 

forecast horizon. LSTM and CNN-LSTM models, which are based on past DNI 

observations only, do not forecast DNI ramps as well as the hybrid model: cloud 

motion is indeed critical to better anticipate DNI variations. This superior 

performance justifies the integration and processing of HDR sky images, that 
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translates into better ramp detection and accurate DNI forecasts compared to the 

models based on DNI measurements only. Finally, the CNN-LSTM slightly 

outperforms the LSTM model thanks to its additional convolutional layer. 

 

Figure 9. Comparison between LSTM, CNN-LSTM, and hybrid models on mixed 
situations. 

The results of the comparison on clear-sky days and overcast days from different 

seasons is given in Figure 10. The smart persistence model generally scores very low 

nRMSE values on such cases. As already seen in Figure 9, the hybrid model 

consistently outperforms the smart persistence model for each forecast horizon, with 

a SF ranging between 6% and 9.5%. The low nRMSE values and the positive SF 

scored by the hybrid model confirm that the model learned to distinguish clear-sky 

and completely overcast situations. However, on such low-variability situations, the 

results obtained by the LSTM and CNN-LSTM models are considerably inferior to the 

results obtained by the smart persistence model. Contrary to the hybrid model, they 

are not able to correctly handle these situations: although the nRMSE they obtain is 

low, the smart persistence model is so performant in these cases that the RNN models 

score negative SF values (around -120% for H=5 min, -50% for H=10 min and -25% 

for H=15 min). This demonstrates the benefits of including sky images in the 

forecastiong process. 
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Figure 10. Comparison between LSTM, CNN-LSTM, and hybrid models on clear-
sky and overcast situations. 

3.5.2.2. Case studies 

A low-variability case is presented in Figure 11: most of the day features a clear-sky 

situation, with thin clouds in the morning and the evening. The smart persistence 

model typically provides great results on such days: here, it outperforms both the 

LSTM and CNN-LSTM models, but the hybrid model still manages to come up with 

better results. 

Thin clouds pose some serious problems for ordinary methods based on the cloud 

fraction, since they usually do not take into consideration clouds’ thickness, leading 

to overestimation of the cloud fraction. As shown in Figure 11 before 10:00 and after 

16:00, the hybrid model  is able to correctly handle these cases. 

Let us focus now on a specific instant during the day: in Figure 11, the sky image 

taken at 15:30 is presented -- precisely 15 min before a drop in DNI. The forecast 

given by the hybrid model shows a decrease in DNI because of the presence of clouds 

in the ROI, and, as predicted, a negative ramp takes place 15 min later. 
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Figure 11. Low-variability DNI forecast at horizon H=15 min. 

A high-variability day is now presented in Figure 12. After a few hours of clear-sky 

(until 10:00), sudden high-frequency variations are observed. This case is challenging 

due to these fast and hard-to-predict DNI variations. Here, the smart persistence 

model performs very poorly, and, while better, the LSTM and CNN-LTM models do 

not give satisfactory results either; again, the hybrid model performs significantly 

better. 

This high-variability day is a good example of the HDR sky images’ contribution in 

the forecasting process: the LSTM and CNN-LSTM models are not able to predict DNI 

ramps, while the hybrid model is able to anticipate them due to the cloud motion 

analysis. In particular, the hybrid model is able to predict sudden DNI variations in 

the period between 11:00 and 13:00. The LSTM and CNN-LSTM models, however, fail 

to predict most of the ramps and perform poorly. 

Let us focus now on two specific instants during the day. 

 Sky image 1, taken at 10:52, shows a situation with clouds in the ROI, leading 

to the correct forecast of a negative ramp 15 min later. Note also that the 

clouds are not in the center of the ROI: had a ROI of the same size as the Sun 

been chosen, that negative ramp would not have been correctly forecast. 

 Sky images 2 and 3, taken at 15:25 and 15:40, respectively, feature a 

complicated sky situation, with thin clouds around the Sun and thick clouds 

approaching. In this situation, methods without special treatment for thin 
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clouds would perform poorly. The proposed hybrid model proves to be robust 

and manages to detect the ramp provoked by the thick clouds that are in the 

ROI in sky image 2 and are starting to block the Sun 15 min later. 

 

Figure 11. High-variability DNI forecast at horizon H=15 min. 
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3.6. Online implementation of the hybrid 
model 
The goal of the development of the hybrid model is to provide accurate DNI forecasts 

in real time. This model has thus been implemented on a server. The HDR sky images 

are transferred every 30 seconds to a hard drive, and the algorithm is able to read 

the HDR sky images stream and perform all the image processing tasks in real time 

to provide DNI forecasts. For every time step and after the code execution, the code 

registers in a Json file including the DNI forecasts, a description of the sky situation 

(clear-sky, overcast, or mixed) derived from the cloud segmentation model, and the 

cloud motion estimation (magnitude and direction). Finally, a sky image with the ROI 

is saved to help understand the provided forecasts. This information is provided to 

CSP infrastructure users via a graphical user interface (GUI), as shown in Figures 12 

and 13. 

 

Figure 12. The GUI providing DNI forecasts to RI users in Odeillo, France. 



 

GA No: 823802 24.01.2023 

 

WP10, Task 2.1 Version 1.0 Page 21 of 25 
 

 

Figure 13. The GUI providing DNI forecasts to RI users in Odeillo, France. 
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3.7. Conclusion 
A hybrid intrahour forecast model has been developed, combining knowledge-based 

and machine-learning approaches and taking DNI measurements and HDR sky 

images as inputs. This hybrid model is compared to LSTM and CNN-LSTM models 

that take only past DNI observations as input, to assess the benefits of integrating 

HDR sky images in the forecasting process. The smart persistence model is also used 

as reference for the comparison. 

Various image processing steps are performed in the proposed hybrid model. Cloud 

segmentation and cloud motion estimation allow to determine an adaptive region of 

interest. The forecasting step is performed using a combination of two neural 

networks: a CNN, which processes the region of interest, and a MLP that takes the 

cloud fraction in the region of interest and a forecast of the clear-sky DNI as inputs 

to finally forecast DNI at horizons between 5 min and 15 min. 

For mixed situations, results show that while all the tested machine-learning-based 

models are capable of outperforming the smart persistence model, the hybrid model 

is clearly ahead. The ramp detection index shows that the hybrid model is able to 

forecast 72% to 80% of the ramps, whereas the LSTM and CNN-LSTM models are less 

efficient and detected between 53% and 66% of the ramps. This difference is due to 

the fact that LSTM and CNN-LSTM models are purely statistical and rely solely on 

past DNI observations to perform forecasts, without taking into account the sky 

situation: efficient cloud detection and accurate cloud motion estimation translates 

into better ramp detection and accurate DNI forecasts.  

For clear-sky and overcast situations, the smart persistence model produces very 

good results, and the results obtained by the LSTM and CNN-LSTM models are 

considerably inferior. However, the hybrid model still manages to outperform the 

smart persistence model, with skill factor values ranging from 6% to 9.5%. Thanks 

to the inclusion of HDR sky images, it successfully manages clear-sky, overcast, and 

mixed situations. As for the complexity of the models, the analysis shows that, while 

the hybrid model is more complex, time-consuming, and demands more 

computational resources, it is still able to provide forecasts within 7% of the 30s 

sampling time. 

Finally, the proposed model has been implemented in situ to provide real-time DNI 

forecasts to RI users. 
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List of abbreviations 

DNI Direct normal irradiance 

CNN Convolutional neural network 

MLP Multi-layer perceptron 

LSTM Long short-term memory 

RMSE Root means square error 

nRMSE Normalized root mean square error 

MAE Mean average error 

SF Skill factor 

RDI Ramp detection index 

ROI Region of interest 

HDR High dynamic range 

NWP Numerical weather prediction 

RM Ramp magnitude 
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Annexes 
In case additional details on the developed algorithms are needed, we provide in the 

sequel two additional documents: 

1. A scientific article published in the journal “Solar Energy”: 

Y. Karout, S. Thil, J. Eynard, E. Guillot, and S. Grieu. Hybrid intrahour DNI 

forecast model based on DNI measurements and sky-imaging data. Solar 

Energy, 249:541–558, Jan. 2023.  

It focuses on the proposed hybrid DNI forecast model, using sky images and 

DNI measurements to provide forecasts at 5 min, 10 min and 15 min. 

2. The PhD thesis written by Youssef KAROUT: 

Y. Karout. Prévision de l’éclairement normal direct par intelligence artificielle et 

commande prédictive d’un réacteur solaire. PhD thesis, Université de Perpignan 

Via Domitia, Dec. 2022. 

It is written in English, with an extended abstract in French. It provides more 

details on the developed approach, and also additional work on the model-

based predictive control of a solar reactor dedicated to syngas production (task 

8.3 of WP8), for which an another DNI forecast model has been developed, 

inspired by the previous one, but adapted to lower forecast horizons (0.5 min 

to 2.5 min). 
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