On-site training for industries on "Testing the durability of solar materials and systems" 08.06.2022 – 10.06.2022

WP 1.3 – NA1- 3rd FREE training course about CST materials and systems

Estelle Le Baron (CEA)/Florian Wiesinger (DLR)

NETWORKING

 \boldsymbol{S} olar \boldsymbol{F} acilities for the European Research Area

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

Solar Facilities for the European Research Area

Wednesday, June 8, 2	.022		
09:15 - 09:30	Introduction and Goals	CEA	15 min
09:30 – 9:45	Generality on durability method studies	CEA	15 min
9:45 – 11:45	Visit and discussion on CEA INDOOR/OUTDOOR facilities and Optical laboratory	CEA	120 min
11:45 - 12:00	- Coffee break -		15 min
12:00-13:00	CEA INDOOR and OUTDOOR aging tests	CEA	60 min
13:00 - 14:00	- Lunch break -		60 min
14:00 -14:30	Standardized tests for reflectors	DLR	30 min
14:30 -15:00	Advanced tests for reflectors	CEA	30 min
15:00 –15:30	Erosion of reflectors and sandstorm simulation	DLR	30 min
15:30 -16:00	Characterization and accelerated aging of parabolic trough receiver materials	DLR	30 min
16:00-16:30	Characterization and accelerated aging of solar absorber materials	DLR	30 min
16:30 -17:00	Sample and data management	CEA	30 min

Cea

Generality on durability studies

Solar Facilities for the European Research Area

Technologies CSP/CST :

E. Le Baron CEA

Fluid temperature : 600-1200°C Concentration factor : ~2000 Villarrobledo

Fluid temperature : 100-450°C Concentration factor : ~ 50

Puerto Errado Novatec

Andasol Fluid temperature : 100-450°C Concentration factor : ~ 100

Collecteurs cylindro-paraboliques

miroir réflecteur

Solar Facilities for the European Research Area

Being able to predict the aging and the degradation rate of solar mirrors and receivers can be profitable :

- To correctly calculate the energy produced over time and to deduce the plant LCOE
- To help scientific and industrial companies to produce best quality of components by identifying the key factors of degradation
- To reassure banks and investors by predicting more accurately future events such as the replacement of components

Durability definition:

- <u>Durability</u>: the ability of a material to resist deterioration caused by external factors and to maintain its performance under conditions of use. [1]
- <u>Lifespan</u>: time between the installation of the material and when its performance drops below the minimum required. It therefore depends on the properties of the material, but also on the performance criteria of the application and the stress factors present in the environment.
- *Performance:* measure of the ability to perform as desired or to exhibit properties useful for the application. [1]
- <u>Aging</u>: degradation of the material's properties over time. It can be natural or accelerated. Aging is said to be natural when the material is used under normal conditions for the application for which it is intended. It is said to be accelerated when the life of the material is shorter or its performance decreases faster than under normal application conditions. For this, it is subjected to greater constraints and its performance is measured over time. [2]

Solar Facilities for the European Research

[1] Michael Kohl, Bo Carlsson, Gary Jorgensen, and A. W. Czanderna. Performance and durability assessment: Optical Materials for Solar Thermal systems. Elsevier Science, 2004. [2] Wayne Nelson. Accelerated Testing: Statistical models, tests plans, and data analyses. John Wiley & Sons, Inc, 1990 edition, 1990.

Solar Facilities for the European Research Area

Durability studies:

Platform for durability study of solar materials and systems with a network of expertise and multisite for outdoor and indoor test

Solar Facilities for the European Research Area

Solar Facilities for the European Research Area

Introduction to the Durability method :

Solar Facilities for the European Research Area

Visit and discussion on CEA INDOOR/OUTDOOR facilities and Optical laboratory

Example of INDOOR and OUTDOOR aging facilities

Solar Facilities for the European Research Area

Characterization

Optical, physical and chemical measurements

- Specular reflectance ٠
- Absorption (plane, tube) at ٠ ambient and up to 1000°C
- Microscope and MEB ٠
- FTIR ... ٠

High temperature emissivity

E. Le Baron CEA Colorimeter

Indoor Testing

Accelerated ageing

- Temperature, humidity ٠
- Irradiation, UV ٠
- Abrasion (sand, cleaning) ٠
- Salt Mist ٠

FTIR

Mirror soiling

- France (INES, Cadarache, Reunion) .
- Morocco (Ouarzazate) ٠

1

CEA INDOOR aging facilities

ISO 9227 : Corrosion tests in artificial atmospheres – salt spray tests

SFERA-III Solar Facilities for the European Research Area

INDOOR aging facilities : NSS

According to the standard <u>ISO 9227:2017</u> (Corrosion testing in artificial atmospheres : Salt spray tests) and <u>IEC 600068-2-52</u> (PV)

- Constant conditions of 35 ± 2°C with [NaCl]=(50±5) g/l; pH=6.5-7.2
- Tilt angle of 20 ± 5° respect to the vertical
- > Condensation rate of 1,5 \pm 0,5 mL/h on a surface of 80 cm²
- Testing time : 480 hours

Mini 3 samples positioned inside the chamber :

- By the front side (glass) facing upwards x 3
- > By the back side (coating) facing upwards x 3

Weiss SC450

INDOOR aging facilities : CONDENSATION

According to the standard ISO 6270-2 (test CH), ISO 22975-3 and UNE 206016

- \blacktriangleright Constant conditions of samples of 40 ± 3°C with 100% relative humidity,
- T°chamber : T°sample + 5°C = 45°C
- \blacktriangleright Tilt angle of 20 ± 5° respect to the vertical, front side up
- Testing time : 480 hours

Mini 3 samples positioned inside the chamber :

By the front side (glass) facing upwards x 3

Vötsch VC0018

T°=-10 to 90°C RH = 10 to 98%

ISO 6270-2: Paints and varnishes – Determination of resistance to humidity ISO 22975-3: Solar energy - Collector components and materials - Part 3: Absorber surface durability

E. Le Baron CEA

Solar Facilities for the European R

INDOOR aging facilities : **CYCLICAL TEMPERATURE AND HUMIDITY**

According to the standard IEC 61215 10.11 and UNE 206016

- 4 hours phase at 85°C ± 2°C
- ➤ 4 hours phase at -40°C ± 2°C
- 16 hours humidity cycle : Method A / <u>ISO 6270-2</u> Constant conditions of 40°C ± 2°C with 97 ± 3 % relative humidity
- Tilt angle of 20 ± 5° respect to the vertical, front side up
- Testing time : 10 cycles ~ 240 hours

Mini 3 samples positioned inside the chamber :

- By the front side (glass) facing upwards
- By the back side (coating) facing upwards

INDOOR aging facilities : DAMP HEAT (DH)

According to the standard IEC 62108 (test number prefered 10.7b 65/85 or 10.7a: Damp heat test 85/85)

- \blacktriangleright Constant conditions of **65** ± 2°C with 85 ± 5 % relative humidity
- Tilt angle of around 25° respect to the vertical
- Testing time : 2000 hours (10.7a T = 85°C/1000 hours)

Mini 3 samples positioned inside the chamber :

- > By the front side (glass) facing upwards
- > By the back side (coating) facing upwards

T°=-40 to 95°C RH = 10 to 95%

Solar Facilities for the European Researc

INDOOR aging facilities : THERMAL CYCLE

According to the standard IEC 61215 Test 10.11 or IEC 62108 Test 10.6 option TCA 1 ou TCA 3

E. Le Baron CEA

IEC 61215: Crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approval IEC 62108: Concentrator photovoltaic (CPV) modules and assemblies - Design qualification and type approval

INDOOR aging facilities : **HUMIDITY FREEZE**

According to the standard <u>IEC 62108 Test 10.8</u> reduced at 65°C two stages:

- 400 cycles from 40°C to 65°C, with a plateau of at least 10 min in an interval of ± 3°C limit temperature;
- a plateau of 20 h at 65°C and 85% RH followed by another at -40°C, lasting less than 4 h with temperature ramps of less than 100°C/h.
- The first stage should include 10 to 18 cycles per day, the second 40 cycles, and the whole should last about 1500 hours.

Mini 3 samples positioned inside the chamber :

- > By the front side (glass) facing upwards
- > By the back side (coating) facing upwards

Weiss WKL 100/40

Solar Facilities for the European Research Area

INDOOR aging facilities : UV Xenon radiation + Temperature

According to no standard

- Air temperature : 70°C
- Sample temperature : 85°C
- Irradiation level : 65 W/m² (300-400 nm)
- Testing time : 1000 hours each side (total: 2000 hours)
- 3 samples positioned inside the chamber :
- > By the front side (glass) facing upwards x 3
- ➢ By the back side (coating) facing upwards x 3

<u>ATLAS</u> SUNTEST XXL

INDOOR aging facilities : UV Xenon radiation + Temperature + water spray

According to the standard ISO 16474-2: Methods of exposure to laboratory light sources — Part 2: Xenon-arc lamps

- Air temperature :70°C
- Sample temperature : 85°C
- Irradiation level : 65 W/m² (300-400 nm) : 27 min, water aspersion : 3 min, cycle duration: 30 min SUNTEST XXL
- Testing time : 1000 hours each side (total: 2000 hours = 4000 cycles of 30 min)
- 3 samples positioned inside the chamber :
- By the front side (glass) facing upwards x 3
- By the back side (coating) facing upwards x 3

ATLAS

Emission spectrum of lamps (xenon NXE 1700) and the sun (reference Air Mass 1.5, ASTM G173-03)

INDOOR aging facilities : UV + Saline mist NSS

According to no standard

SUNTEST XXL

- Irradiation test xenon lamp with filtre (65 W/m² between 300-400 nm), t=200h, air T=70°C
- ➢ NSS (T=(35±2)ºC; 100% RH; [NaCl]=(50±5) g/l; pH=6.5-7.2), t=200h
- Cleaning of the sample with deionized water after NSS phase
- ➤ Testing time : 1 cycle : 400 hours → 10 cycles

<u>+ Weiss SC450</u>

INDOOR aging facilities : UV Mercury radiation + Temperature

According to no standard

- Air temperature: 70°C, sample temperature ~ 85°C
- Irradiation level: 90 W/m² (300-400 nm), RH no control
- Testing time : 1000 hours each side (total: 2000 hours)
- 3 samples positioned inside the chamber :
- By the front side (glass) facing upwards x 3
- > By the back side (coating) facing upwards and glass is protected with a special tape

ATLAS

SEPAP 12/24

INDOOR aging facilities : UV-5X Metal halide radiation + Temperature + Humidity

According to no standard

- 4 hours at 60°C to UV-radiation (300-800 nm), relative humidity controlled
- 4 hours at 50°C to condensation without irradiation, 95% relative humidity
- Testing time : 1000 hours each side (total: 2000 hours)
- 3 samples positioned inside the chamber :
- By the front side (glass) facing upwards x 3
- > By the back side (coating) facing upwards and glass is protected with a special tape

70 80 90 100

Jumidité relative (HR

~QZ

Size : 220 x 150 x 284 cm

the sun (reference Air Mass 1.5, ASTM G173-03)

INDOOR aging facilities : UV-5X Metal- halide radiation + Temperature + Humidity

According to no standard

E. Le Baron CEA

- > 2,5 hours at 80°C to condensation without irradiation, 85% relative humidity +UV
- > 2,5 hours at 40°C to UV-radiation (300-800 nm), 50% relative humidity
- Testing time : 1000 hours each side (total: 2000 hours)
- 3 samples positioned inside the chamber :
- By the front side (glass) facing upwards x 3
- > By the back side (coating) facing upwards and glass is protected with a special tape

Emission spectrum of lamps (HTC 2000-349) and the sun (reference Air Mass 1.5, ASTM G173-03)

INDOOR aging facilities : HAST test Humidity and pressure for mirrors

According to standard IEC 68-2-66

- \blacktriangleright Constant conditions until P : 2 bars
- ➤ T: 121°C
- ➢ RH: 100%
- Testing time : 240 hours

3 samples positioned inside the chamber

0 10

100 110 120 130 140 150

INDOOR aging facilities : Solar Simulator 1 SUN radiation

Technical specifications of lamp field

Technical specification	Details
Effective degrees of freedom of lamp rig and lamps	3 linear, 1 rotational (0° to 90°), actuators electrically controlled, height and inclination sensors
Lamp type	ATLAS MTT "Solar Constant 4000"
Spectral Quality	according to EN12975: 2006 and ISO 9806- 1:1994
Life expectancy of lamps	1000 hours
Max. Intensity on test area without artificial sky	1200 W/m² (280-3000 nm)
Max. Intensity on test area with artificial sky	1100 W/m² (280-3000 nm)
Size of test area with 1200 W/m² (without artificial sky), ± 10% homogeneity	2.0 m x 2.4 m
Temporal stability of light intensity	± 1%
Collimation	approx. 90% of the emitted radiation lies in the range in which the IAM of a regular flat plate collector varies by no more than 2%
Intensity Control	75 - 100%

Technical specifications of the collector test platform

Technical specification	Details
Test surface	net: 2.4 m x 3.2 m, gross: approx. 2.5 m x 3.3 m
Max. load	approx. 400 kg laminar
Range of incline	0° to 90°
Precision	± 1°
Ventilation Unit	
Technical specification	Details
Number of cross-flow fans	2
Max. air flow speed	4 m/s
Electrical power	approx. 1000 W each
Electrical connection	230 V/50 Hz

Technical specifications of the thermostat

Technical specification	Details	
lemperature range	10° C - 110° C	
lemperature control	±0.1° C	
Heating power / Cooling power	6 kW / 4 kW	602
Max. pump pressure	4 bar	
Max. pump flow	600 kg/h	
/olume flow range (min. / max.)	approx. 70 to 420 l/h	A
Max. deviation	±1%	

INDOOR aging facilities : **Constant** Temperature

According to no standard

- Constant conditions of 70 ± 2°C or 85°C or 100°C
- > Testing time : 2000 hours

3 samples positioned inside the chamber :

<u>CTS Venticell</u> T° < 250°C

INDOOR aging facilities : Constant Temperature for absorbers

According to standard <u>ISO 22975-3:2014</u>

- Constant conditions until 850°C
- Testing time : 10 000 hours

3 samples positioned inside the chamber :

<u>Nabertherm</u> <u>N30/85HA</u> < 850°C

INDOOR facilities : artificial soiling for mirrors

According to no standard

- « Standard test dust »: SAE J 726, MIL 810, GARNET
 120 or local one
- T of the chamber : between 10 and 50°C as throughout the day or night
- T of the sample : between 5 and 90°C
- ➢ RH of the chamber : between 25 and 80%
- The sand is sprayed constantly inside the enclosure with a speed of 350 to 550 mm/h. The projected sand rebounds on the deflector positioned in the foreground, creating a cloud of dust which will settle slowly (approximately 1 hour) on the sample

4 samples positioned inside the chamber

Standardized INDOOR aging tests :

Test	Testing conditions	Proposed duration	Chamber	Standard
NSS	T=(35±2)ºC; RH=100%; [NaCl]=(50±5) g/l; pH=6.5-7.2	480 h	Weiss SC450	ISO 9227
Condensation	T=(40±3)ºC; RH=100%	480 h	Vötsch VC0018	ISO 6270-2 (CH) and UNE 206016
Cyclical temperature and humidity	4 hours at T=85 ^o C; 4 hours at T=-40 ^o C; 16 hours at T=40 ^o C and RH=97 ± 3 %	10 cycles	Weiss WKL 100/40	UNE 206016
Humidity Freeze	From T= (-40±2) ^o C to T= (65±2) ^o C. Minimum dwell time 10 minutes (around 1.85 h per cycle)	40 cycles	Weiss WKL 100/40	IEC 62108 (10.8)
Damp Heat	T=(65±2)ºC; RH=(85±5)%	2000 h	Weiss WKL 100/40	IEC 62108 (10.7b)

Current standard for reflectors in IEC TC 117 :

Standard	Title	Status
IEC 62862-3-5	Part 3-5 : Laboratory reflectance measurement of concentrating solar thermal reflectors (Ciemat)	New in 2021
IEC 62862-3-6	Part 3-6 : Accelerated aging tests of silvered-glass reflectors for concentrating solar technologies (DLR)	New in 2021

CEA OUTDOOR aging facilities

Solar Facilities for the European Research Area

OUTDOOR aging facilities :

Choice of sites:

- Easily accessible (regular measurements)
- Different climates

Exposure sites :

★ INES
 ★ CEA Cadarache
 ★ Université de Corse Pasquale Paoli
 ★ PIMENT

Laboratoire de Recherche Physique et Ingénierie Mathématique nt pour l'Energie, l'environnemeNt et le bâtimenT

Ile de la Réunion

Università di Corsica Desquale

Solar Facilities for the European Research Area

CEA OUTDOOR aging facilities at 222 INES and CADARACHE :

Trackers

> 10 m², >175°C (water), 2 axis (accuracy 0.05°) 2 coolers

Solar Thermal Plants

Solar Thermal Energy

1 MW Solar Thermal Energy

Outdoor environmental monitoring

F. Trieb, C. Schillings, M. O'Sullivan, T. Pregger and C. Hoyer-Klick, "Global Potential of Concentrating Solar Power", SolarPACES Conference, 2009.

Racks, concentrators paraboles Natural aging /accelerated + coupling

Natural rack exposure

Fresnel Lens < 500 °C

E. Le Baron CEA

OUTDOOR aging facilities : Natural outdoor exposure at 202 INES and CADARACHE :

Fresnel Lens < 500 °C

Solar concentrator with tracking system < 900°C Cadarache

High mechanical stress (different thickness, Masked rear face, Water and dirt retention areas, corrosion with steel material of the rack

OUTDOOR aging facilities : 2 LFR solar demonstrators at CADARACHE

- 1000 m² of mirrors
- concentration factor 50
- 20 linear reflectors of 50m
- Two receiver lines 50*0.2m
- Heat transfer fluid: Therminol oil
- Operating temperature 300°C
- Prototype capacity 400 kWth
- Electricity production: 50 kWel
- Storage capacity 1500 kWh~ 4h for night/cloud operation

- 1600 m² of mirrors
- concentration factor 50
- 100 ml multi-tubes cavity receiver
- Direct Steam Generator
- Steam production temperature at 450°C and a pressure of 100 bar
- Prototype capacity 780 kWth
- Storage capacity 1600 kWh innovative three-stages Thermal Energy Storage

OUTDOOR aging facilities : Natural outdoor exposure on others sites

cea

p(men)

PIMENT

Wet wick on Reunion Island ISO 9225 :2002

ISO 9225:2012 Corrosion of metals and alloys -- Corrosivity of atmospheres -- Measurement of environmental parameters affecting corrosivity of atmospheres

Sites with different climates / environmental stresses Meteonorm[®] and meteorological station

CEA Optical Laboratory

Solar Facilities for the European Research Area

Optical Characterizations of reflectors and glass :

Perkin Elmer Lambda 950 Spectrophotometer

- Spectral hemispherical reflectance/transmittance : $\rho_{\lambda}(\lambda, \theta_i, h) \& \tau_{\lambda}(\lambda, \theta_i, h)$
- Integrating sphere of 150 mm diameter
- $\succ \lambda = [280,2500] \text{ nm} / 5 \text{ nm} \text{ intervals} / \theta_i = 8^{\circ}$
- 3 measurements on each sample (0°/90°/180°)
- max Size : 10 x 10 cm²

D&S 15R-USB portable specular reflectance

- > Monochromatic specular reflectance -> $\rho_{\lambda}(\lambda, \theta_i, \phi)$
- \succ θ i = 15° / ϕ = 12,5 mrad / λ = 660 nm
- ➤ 3 or 5 different positions on each sample

${\tt Spectralon} {\mathbb R}$

Optical Characterizations of reflectors and glass :

Perkin Elmer Lambda 950 Spectrophotometer

- > Spectral specular reflectance/transmittance : $\rho_{\lambda}(\lambda, \theta_i, \phi) \& \tau_{\lambda}(\lambda, \theta_i, \phi)$
- Various incident and reflectance angles 8 to 85°
- $\succ \lambda$ = [280,2500] nm / 5 nm intervals
- 3 measurements on each sample (0°/90°/180°)
- max Size : 10 x 10 cm²

BYK Colorimeter Spectro-Guide Sphere Gloss

- > Monochromatic specular reflectance > $\rho_{\lambda}(\lambda, \theta_i, \phi)$
- ► L, a, b , ΔE, Δ G
- photodegradation or gloss of the paint
- > 3 measurements on each sample

Optical Characterizations of reflectors and glass :

- Krüss Mobile Surface Analyzer® (MSA) contact angle
- Young-Dupré method thanks to the software
- > two drops are deposited on the glass surface to see the homogeneity of the coating EasyDrop
- > 20 measurements on each sample

Innowep Traceit® Rugosimeter

- Surface roughness
- Rugosimetry images (5 × 5 mm) of the surface
- surface roughness, porosity
- ➤ 3 measurements on each sample

TRACEIT

Optical Characterizations of reflectors :

FTIR ATR Spectrophotometer

- characterization of paints by Fourier Transform Infrared Spectroscopy (FTIR) between 500 and 4000 cm⁻¹ with a spectrometer equipped with an Attenuated Total Reflectance (ATR) instrument
- 3 measurements on each sample

FTIR portable Top Scan 4300 from Agilent Technologies

- characterization of paints by Fourier Transform Infrared Spectroscopy (FTIR) Diffuse and specular reflectance between 650 and 5000 cm⁻¹
- 3 measurements on each sample

E. Le Baron CEA

Optical Characterizations of reflectors :

Nova Nanosem 630 scanning electron microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD)

- Surface morphology
- element analysis and atomic composition

Structure of a mirror : diagram, image under light microscope and SEM

charges \ paint	white	brown	red
CaCO3	no	yes	yes
K2CO3	no	no	no
BaSO4	yes	yes	no
PbSO4	no	yes	no
Mg3 Si4 O10 (OH)2	yes	yes	yes
TiO2	yes	No	no
ZnO	no	no	yes
ZnO	l no	no	yes

Mineralogical composition of the Moroccan sands obtained by XRD

Optical Characterizations of reflectors :

Microscope Zeiss Axio

> Corrosion, corrosion on the edges, degradation of the coating, oxydation, scratches...

Macroscopic photography

- > Canon EOS 1200D camera with a conventional lens (EFS 18-55 mm)
- > Corrosion spots, corrosion on the edges, scratches...
- Front side and back side of each sample

Optical Characterizations of reflectors :

New Equipment for Measurement of Soiling and Specular Reflectance and particles counting on Solar Mirrors :

Soiling sensor prototype

- \succ 10 leds = λ =365 − 850 nm
- Automatic range of incidence / reflectance angles =15° 65°
- Reflectance measuring a window of 3mm diameter
- > Acceptance angle for reflectance measurement of $2\phi = 40$ mrad

Photodiodes

Motor

Camera

Optical Characterizations of absorbers :

Perkin Elmer Lambda 950 IS + Bruker IR Vertex 70 IS Spectrophotometer

- > Spectral hemispherical reflectance : $\rho_{\lambda}(\lambda, \theta_i, h)$
- Integrating spheres of 150 mm diameter for Perkin Elmer Lambda 950 and a PIKE 76.2 mm diameter for Bruker IR VERTEX 70
- $\succ \lambda = [280,2500] \text{ nm} / 5 \text{ nm} \text{ intervals} / \theta_i = 8^{\circ}$
- $> \lambda = [1800, 16000] \text{ nm} / 40 \text{ nm} \text{ intervals} / \theta_i = 12^{\circ}$
- > 3 or 4 measurements on each sample
- max Size : 10 x 10 cm²
- \succ Flat or tubular samples ϕ 30-70 mm diameter

 ${\sf Etalon}\;{\sf Infragold}{\Bbb R}$

Tubular samples spectro UV/VIS (left) and IR (right)

Instrument	Manufacturer	Model	Accessory	Reflectance
Spectrophotometer	Perkin Elmer	Lambda 950	IS (Ø 15 cm)	ρ _{s,h} ([280,2500],8°,h)
Spectrophotometer	Bruker	Vertex 70/PIKE	IS (Ø 7.62 cm)	ρ _{s,h} ([1800,16000],12°,h)

Optical Characterizations of absorbers :

Bruker IR VERTEX 70 Spectrophotometer+ high temperature test bench

- Spectral directional luminance
- $> \lambda = [1280, 28500] \text{ nm} / \theta_i = 12^{\circ}$
- 1 measurement on each sample
- Flat samples size min/max : ϕ 25-70 mm diameter –thickness < 3 mm
- ➤ T = 100°C-1000°C

Portable Emissometer D&S AE1-RD1

- > Total hemispherical emissivity measurement

D&S AE1-RD1

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Standardized tests for reflectors

Florian Wiesinger, DLR

Knowledge for Tomorrow

Contents

Fundamentals of reflectance

Measurement of reflectance parameters

Typical reflector types

Standardized test methods

Summary

Reflectance – Crucial Parameter for CSP - Introduction

Examples for **diffuse** reflecting surfaces (room temperature)

<u>High ρ [%]:</u>

•	Titaniumdioxid	99
•	Magnesiumoxid 96	
	(vapor deposited)	
•	Gypsum	80
•	White Paper	70

<u>Low ρ [%]:</u>

- Black platinum 0.1
- Carbon black 0.8
- Black varnish 1-1.5

5

Black paper

Examples for **specular** reflecting surfaces

High ρ [%]:

- Aluminum (polished) 87-92
- Silver (polished) 98-80
 (λ-range 0.37-1μm)
- Steel(polished) 93
- Stainless Steel 89

$\boldsymbol{\rightarrow}\,\rho$ is highly depending on λ

Handbook of Chemistry and Physics, 75th Edition Manufacturer datasheet: Electro Optical Industries Inc.

Reflectance – Crucial Parameter for CSP - Introduction

Characteristics for metals:

• High ρ in IR, drop at visible and UV

Slide

 Position of the edge depending on surface state and temperature.

Characteristics for non-metals:

Two absorption-edges, one in the visible and one in the IR, in between high ρ

\rightarrow How should $\rho(\lambda)$ be modeled?

Reflectance – Crucial Parameter for CSP - Introduction

Reflectance – Laboratory Measurements - Overview

Perkin Elmer Lambda 1050 spectrophotometer

Measures hemispherical reflectance, transmittance & absorptance

Multiple Wavelength Portable Specular Reflectometer, Model 15R-RGB

Measures specular reflectance

Reflectance – Fundamental Definitions

specular reflectance within acceptance angle $\boldsymbol{\phi}$

hemispherical reflectance (acceptance angle is complete hemisphere "φ=h")

Reflectance – Fundamental Definitions

- Reflectance is wavelength dependent
- A suitable "mean value" of all relevant solar wavelengths is the solar weighted reflectance

$$\mathcal{O}_{s,\varphi}([\lambda_a,\lambda_b],\theta_i,\varphi,T_s)$$

$$\rho_{s,\varphi}([\lambda_a,\lambda_b],\theta_i,\varphi,T_s) = \frac{\sum_{i=0}^{i_{\max}} \rho_{s,\varphi}(\lambda_i,\theta_i,\varphi,T_s) \cdot G_b(\lambda_i)}{\sum_{i=0}^{i_{\max}} G_b(\lambda_i)}$$

The spectral solar irradiance $G_b(\lambda_i)$ can be obtained in 5 nm steps from a reference spectrum, e.g. ASTM G173 with air mass 1.5 and 1000 W/m²

Reflectance – Fundamental Definitions

Every measured reflectance value needs to be declared in the format:

$$\rho_{\lambda,\varphi}(\lambda,\, heta_i,\,arphi,\,T_s)$$

- λ wavelength
- θ_i incidence angle
- φ acceptance angle

- [nm] [º] [mrad]
- T_s surface temperature of the mirror [^oC]

To indicate solar weighted values use "s" as index and indicate the wavelength range of the weighting instead of λ

To indicate hemispherical reflectance use "h" instead of $\boldsymbol{\varphi}$

Examples:

ρ_{λ,φ} (660 nm, 15º, 12.5 mrad, 25ºC) = 95.3% ρ_{s,h}([280,2500nm], 8º, h, 25ºC) = 94.1%

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Optical components of CSP

Mirror types – silvered-glass mirrors

Typical reflectance values:

 $\rho_{s,h}([280,2500nm], 8^{\circ}, h, 25^{\circ}C) = 93.0 - 95.0\%$ $\rho_{\lambda,\varphi}(660 nm, 15^{\circ}, 12.5 mrad, 25^{\circ}C) = 95.0 - 96.0\%$

Slide

+ cost ~15€/m²

+ good durability: Pb containing paints proofed durability >30 years Pb free paints need to proof durability still

Optical components of CSP

Mirror types – laminated glass mirrors

Typical reflectance values:

 $\rho_{s,h}([280,2500nm], 8^{\circ}, h, 25^{\circ}C) = 94.5\%$ $\rho_{\lambda,\varphi}(660 nm, 15^{\circ}, 12.5 mrad, 25^{\circ}C) = 95.5\%$

- + Thin front glass increases reflectance
- + Excellent durability
- Cost

Glass 1.6mm

Silver

Copper

polyvinyl butyral (PVB) (adhesive)

Glass 2.3mm

[Guardian]

Optical components of CSP

Mirror types – PVD coated aluminum reflectors

- Typical reflectance values: $\rho_{s,h}([280,2500nm], 8^{\circ}, h, 25^{\circ}C) = 90.0\%$ + cost $\rho_{\lambda,\varphi}(660 nm, 15^{\circ}, 12.5 mrad, 25^{\circ}C) = 85.5\%$
- + flexible - durability SiO₂ - reflectance TiO₂ SiO₂ Nano-3µm SiO₂ - sol-gel protective coating Composite TiO₂ 60nm PVD-AI SiO₂ 95nm layer-AI (99.99% purity) 65nm system Anodizing- AI_2O_3 3µm layer , **0.5mm** Al-Substrate

100 nm¹

ISO 16474-3 (replaces ISO 11507): UV+humidity Test

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Accelerated aging tests

IEC 62108 10.7a: Damp heat test 85/85

Chamber temperature: $85 \pm 2^{\circ}$ C Humidity: Testing time:

85 ± 5 % relative humidity 1000 hours

IEC 62108 10.7b: Damp heat test 65/85

Chamber temperature: $65 \pm 2^{\circ}$ C Humidity: Testing time:

85 ± 5 % relative humidity 2000 hours

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Accelerated aging tests

ISO 9227: Neutral salt spray test (NSS)

Chamber temperature: 35 ± 2 °C Humidity: Sprayed solution:

Condensation rate: Sample position: Testing time: constant 100% relative humidity demineralized water + 50 g/l NaCl (pH 6.5 – 7.2) 1.5 ± 0.5 ml/h on a surface of 80 cm² $20 \pm 5^{\circ}$ respect to vertical 480 - 3500 hours

ISO 9227: Copper accelerated salt spray test (CASS)

Chamber temperature:	50 ± 2 °C
Humidity:	constant 100% relative humidity
Sprayed solution:	demineralized water + 50 g/l NaCl + 0.26 g/l CuCl ₂
	(pH 3.1 – 3.3)
Condensation rate:	1.5 ± 0.5 ml/h on a surface of 80 cm ²
Sample position:	20 ± 5° respect to vertical
Testing time:	120 – 480 hours

 CuCl_2

DIN 50018 / ISO 6988: Kesternich Test

Chamber temperature: Humidity: Initial SO_2 concentration: Cycle time: Testing time: ambient / 40 ± 3°C ambient / 100% relative humidity 0.33 or 0.67% of volume of testing chamber 24 hours >20 cycles

ISO 61215: Thermal Cycling

Chamber temperature: -40°C to +85°C Humidity: dry Cycle duration: Recommended cycle number: >100

Thermal Cycling with humidity based on ISO 6270-2CH

Chamber temperature:-40°C to +85°CHumidity:ambient to 100% relative humidityCycle duration:24 hRecommended cycle number:>20

Method A

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	16	40	97±3

Method B1

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	16	85	85±3

Method B2

Step	Duration (h)	Temperatur e (ºC)	Relative Humidity (%)
1	4	85	Not controlled
2	4	-40	Not controlled
3	40	65	85±3

Time [h]

Humidity Freeze Test IEC 62108

Chamber temperature:	-40°C to +65°C
Humidity:	ambient to 85% relative humidity
Precycling:	400 cycles
Cycle duration:	24 h
Freeze cycle number:	40
Total testing time:	~2000h

400 precycles -40 to 65°C, dry

Abrasion testing

Available standards: ISO 11998, DIN ISO 9211-4

Simulation of cleaning cycles

Scratching of coatings with controlled normal force

SFERA III: On-site training for industry , Le Bourget-du-Lac, June $8^{th}-10^{th}\ 2022$ http://sfera3.sollab.eu/

Accelerated erosion testing

Sand trickling test DIN 52348

rotating sample under impact

Closed loop sand storm chamber (based on MIL-STD 810G)

Slide

PAC

Testing programs

Basic program

Test	Standard	Testing conditions	Duration
Neutral Salt Spray (NSS)	ISO 9227	T: 35°C pH: 6.5 to 7.2 at 25°C	480 h
Copper-accelerat ed acetic acid salt spray (CASS)	ISO 9227	T: 50° C pH: 3.1 to 3.3 at 25° C	120 h
Condensation	ISO 6270-2	T: 40° C RH: 100%	480 h
UV and humidity test	ISO 16474-3	4h UV exposure at 60° C; 4h 100% RH at 50° C	1000h on both sides
Combined thermal cycling and condensation test	AENOR draft Method A	4 h 85° C, 4 h -40° C, Method A: 16 h T° : 40° C and 97±3% RH	10 cycles (240 hours)

Advanced program

Test	Standard	Testing conditions	Duration
Neutral Salt Spray (NSS)	ISO 9227	T: 35°C pH: 6.5 to 7.2 at 25°C	3000 h
Copper-accelerated acetic acid salt spray (CASS)	ISO 9227	T: 50° C pH: 3.1 to 3.3 at 25° C	480 h
Condensation	ISO 6270-2	T: 40° C RH: 100%	1000 h
UV and humidity test	ISO 16474-3	4h UV exposure at 60° C; 4h 100% RH at 50° C	1000h on both sides
Combined thermal cycling and condensation test	AENOR draft	4 h 85° C, 4 h -40° C, Method A: 16 h T: 40° C and 97±3% RH	20 cycles (480 hours)
Thermal cycling	IEC 62108 (Test 10.6 TCA3)	T: 65°C - -40°C	150 cycles (~280 h)
Damp Heat	IEC 62108 (Test 10.7b)	T: 65°C; RH=85%	2000 h
Combined thermal cycling and Damp Heat	IEC 62108 (Test 10.6 TCA3 + Test 10.7b)	1 st step: thermal cycling as above, 2 nd step: Damp Heat test	150 cycles + 2000 h
Combined thermal cycling and NSS	IEC 62108 (Test 10.6 TCA3) + ISO 9227	1 st step: thermal cycling as above, 2 nd step: NSS	150 cycles + 3000 h
Sand erosion test	Test dust ISO 12103-1 A4 coarse	v = 12.5 m/s, $c = 100 \text{ mg/m}^3$	10, 20, 40 and 60 min

Accelerated aging testing

Analyzed parameters

Slide

CEA Advanced tests for reflectors

SFERA-III

Solar Facilities for the European Research Area

Technologies of reflectors :

Technologies of reflectors :

Mirror	Silvered glass	Aluminum	Polymer	
Specular Reflectance	93 – 95 %	86 – 91 %	96 %	
Weaknesses	shocks	abrasion, cleaning	abrasion, cleaning, corrosion by edges	Performance
Weight	heavy (10 kg/m²)	light (3 kg/m²)	light	aluminum
Implementation	difficult	Simple	average	Attractive cost
mirror cost	low	low	High	
reflector cost	High	low	low	
Maturity	mature for a long time	mature	in development	

Solar Facilities for the Europ

What are the main stress factors ?

- 1. Temperature
- 2. Irradiation, UV
- 3. Relative Humidity

All of these stresses are applied at the same time

Example of Indoor accelerated tests of reflectors :

Thermal aging tests → 5 conditions: 70°C, 85°C, 100°C, 115°C and 130°C

- Evolution of specular reflectance ps over time t punctual measurements
- Equation → extrapolate the loss at any time

temps(h)

1 0 0 0

Weibull equation :

100

miroir C

0

(%) sdv

-15

E. Le Baron CEA

10

$$\Delta \rho_s = K \left(1 - exp\left(-\frac{(t.\,10^{-3})^a}{b} \right) \right)$$

Regression on the experimental points thanks to the parameters (a, b, K)

10 000

Example of Indoor accelerated tests of reflectors :

Thermal aging tests Macroscopic observation at the final exposure times :

- Formation of a homogenous veil on the silver
- Intensity *¬* with T

Example of Indoor accelerated tests of reflectors :

Thermal aging tests FTIR-ATR spectrum of mirror A surface paint at 100°C :

Example of Indoor accelerated tests of reflectors :

Damp Heat aging tests \rightarrow 5 conditions: 70°C/85%HR, 85°C/75%HR, 85°C/85%HR, 85°C/95%HR and 95°C/85%HR Evolution of specular reflectance ps over time t Equation \rightarrow extrapolate the loss at any time 1 1° 1000 2000 3000 -6 -5 -4 -3 -2 -1

Weibull equation(classic form for aging studies)

$$\Delta \rho_s = K \left(1 - exp\left(-\frac{(t.\,10^{-3})^a}{b} \right) \right)$$

Regression on the experimental points thanks to the parameters (a, b, K)

Example of Indoor accelerated tests of reflectors :

Damp Heat aging tests → 5 conditions: 70°C/85%RH, 85°C/75%RH, 85°C/85%RH, 85°C/95%RH and 95°C/85%RH Macroscopic observation at the final exposure time (2000 h) :

- Corrosion by pitting and by the edges with ↗ RH %
- Formation of a homogenous veil on the silver with $\nearrow T$

mirror C

Example of Indoor accelerated tests of reflectors :

Example of Indoor accelerated tests of reflectors :

UV tests comparison Evolution of specular reflectance ps over time t

Ageing chambers characteristics O Durasol						
Name	Suntest XXL+	Sepap 12/24	UV5X			
Company	ATLAS MTS	ATLAS MTS	AMC/AMTC from CEA specifications			
Lamps	Xenon	Mercury	Xenon			
Irradiance (300 - 400 nm)	65 W/m²	90 W/m ²	205 W/m²			
Temperature of order	70 °C	70 °C	70 °C			
Samples placement	put on the fix bottom plate	rotation on a carrousel	fix support			
Samples number (7x7 cm ²)	12	6	≈ 100			
Acceleration Ratio relative to Suntest XXL+ acceleration	1	1.4	3.2			

Example of Indoor accelerated tests of reflectors :

UV tests comparison

Evolution of specular reflectance ps over time t on 4 types of mirrors

Example of Indoor accelerated tests of reflectors :

UV tests comparison back side/front side \rightarrow Evolution of specular reflectance ps, colorimetry and FTIR-ATR over time t on 2 Specular Reflectance of Silver Aps Colorimetry of paints : loss of gloss ∆G types of monolithic glass mirrors Mirror A Mirror B Mirror A Mirror B legend Time (h Time (h) Time (h) legend Time (h 1000 1000 1500 1000 1500 2000 250 65 W/m² 65 W/m Front Front -20 65 W/m² 65 W/m² Spectral distribution of lamps ∆ps (%) Back Back 8 205 W/m -Suntest XXL+ 205 W/m Front Front -UV5X Irradiance (W/m²/nm) 205 W/m² 205 W/m Back Back 00 rra Degradation Rate : Degradation Rate : Results = expected The loss of gloss is usually correlate with Back side > Front side Back side ≥ Front side the binder degradation. [2,3] ΔG back side > ΔG front side Back side: $\Delta G 205 \text{ W/m}^2 > \Delta G 65 \text{ W/m}^2$ → Degradation of paints seems to impact the specular reflectance loss for both Front side: ∆G 205 W/m² ≈ ∆G 65 W/m² irradiations, especially for mirror A FTIR-ATR of paints during 65 W/m² UV irradiation Mirror A Mirror B front side: few changes 0 Front side Front side back side: lot of damage exposed 200 600 800 exposed → agreement with λ (nm) colorimetry UV range of interest Chemical bonds are broken or formed by the UV Conclusion : irradiation Back side paint exposure is more sensible to Degradation of paints: 1500 Wavenumber (cm⁻¹) 1000 mirror A > mirror B 1500 Wavenumber (cm⁻¹) 1000 the photodegradation for the 2 mirrors → ∆ps (A) is certainly due Back side to the loss of protection Back side during back side exposure (reflectance + colorimetry + FTIR-ATR) exposed exposed $\rightarrow \Delta \rho s$ (B) certainly comes from another mechanism Mirror A paint is more sensible to the which is under investigation, because paint

1500 Wavenumber (cm⁻¹) 1000

1500

Wavenumber (cm⁻¹) 1000

has just started to change.

E. Le Baron CEA

photodegradation (colorimetry + FTIR-ATR)

Example of Indoor combination of accelerated tests of reflectors :

3 successive conditions:

- 1. NSS : Neutral Salt Spray (NSS) ISO 9227 alone = 1600 h
- 2. UV-f : UV radiation alone in Suntest XXL+ 85 °C and 65 W/m² (300 400 nm) front side = 400 h
- 3. UV-NSS : alternation of cycles 300 h of UV radiation + 300 h of saline mist

Evolution of specular reflectance ps over time t

FTIR-ATR of surface painting of mirror over time t

$\Delta \rho_{s}$ (NSS) < $\Delta \rho_{s}$ (UV-NSS) < $\Delta \rho_{s}$ (UV) :

- Degradation by UV is predominant during alternation
- Different degradation in NSS / UV-NSS / UV (binder photo-oxidation)

Example of Outdoor tests of reflectors :

Example of Outdoor tests of reflectors :

Evolution of specular reflectance ps over time t

Time (days)INES PIMENTS87	 ■ PIMENT 7x7 ■ PIMENT 20x20 ● INES 7x7 ● INES 20x20 ▲ Cadarache 7x7 △ Cadarache 20x M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 	20
mirror A		
mirror C	-2 -3 1 0 0 Δ 0	specular reflectanc mirror F> mirror C >
mirror F	-3 0 -2 (%) -4 5 5 5 6 -8 -10	ç
E. Le Baron CEA	■ PIMENT 7x7	_

ce loss : mirror A

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Erosion of Reflectors and Sandstorm Simulation

Florian Wiesinger, DLR

Knowledge for Tomorrow

Contents

Motivation

Outdoor campaign

Laboratory Test Setups

Results of parameter studies

Summary

Motivation – Oil Consumption

Slide

100 million barrels of oil every day

Stern III: On-site training for industry, Le Bornget-du-Lac, June 8th - 10th 2022 Mother Aftrak Oabeu/- Solar Power Potential

- Theoretically 1% of the area of the Sahara used for CSP would be sufficient to supply for all global energy.
- The current global installed CSP is at 6 GW, a bit less than 50% of it in Spain.

Slide

- IEA forecasts (2050) 4380 TWh CSP contribution which corresponds to 11% of worldwide electricity output.
- One technical problem → high material wear

Motivation – Issues implementing CSP in desert environments

Deposited particles:

 Soiling of mirrors leads to loss of optical plant efficiency

Suspended particles:

- Atmospheric dust load causes
 extinction of radiation in tower plants
- Permanent damage on mirrors and materials

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Motivation – Issues implementing CSP in desert environments

aluminum mirror

Zagora for 20 month

glass mirror specular reflectance drop after 20 month in Zagora:

aluminum	glass
32.9%	5.2%

annual economical loss of average 50MW plant due to 1% reflectance drop = 600 000\$

SFERA III: On-site training for industry , Le Bourget-du-Lac, June $8^{th} - 10^{th}$ 2022

Motivation - Objective

Three different erosion simulation setups: a) soil pipe, b) closed loop wind tunnel and c) open loop wind tunnel.

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/ Outdoor Campaign

- Extensive outdoor exposure campaign on 13 sites: Almeria, Tabernas, Gran Canaria, Abu Dhabi, Oujda, Missour, Erfoud, Zagora, Tan Tan, Maan, Tatauine, Adrar, Cairo
- Variety of site conditions, from urban over coastal to desert
- On-site measurements of parameters (temperature, wind, irradiation, humidity, particles, etc.)

SEERA III: On-site training for industry , Le Bowget-du-Lac, June 8th – 10th 2022

Measurements Operation of severall passive sampling devices.

Slide

SEERA III: On-site training for industry , Le Boxget-du-Lac, June 8th – 10th 2022

Measurements

Three different active dust measurements samplers:

- Dusttrak 8533 from TSI
- EDM164 from Grimm
- HVS-TSP16 from MCZ

Outoor Stration @ PSA

Slide

Slide

Outor for industry, Le Bourget-du Lac, June 8th – 10th 2022 Outor Outor Concentration @ Missour

SFERA III: On-site training for industry, Le Bourget-du-Lac, June 8th – 10th 2022 Outotop for 3. solub a mpaign – Dust

Movement a)

1) first particle dislodgement from the ground which later impacts the ground, releasing a new particle wave; 2) small particles in suspension mode; 3) the saltation cloud; 4) surface creep

Darmenova et al. 2009

Slide

Slide

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 Outoto: 6fer 3.solab a/mpaign – Dust

Movement Zagora high erosion Mi

Zagora high erosion, Missour low erosion

Strong wind ≠ Strong dust movement/erosion

SFERA III: On-site training for industry, Le Bourget-du-Lac, June 8th – 10th 2022 Outoto: for 13. solab a mpaign – Dust

A chigh Crositen, Missour (b) low erosion

Absolute hours of u/rh couples

Slide

Stand III: On-sile training for industry, Le Bourget-du-Lac, June 8th – 10th 2022 Outor for a solution of the Dust Monto and Contract of the Dust Monto and Contract of the Dust

Cumulated dust concentration [µg/m³]

Slide

Slide

SFERA III: On-site training for industry, Le Bourget-du-Lac, June 8th – 10th 2022 Outoto for 3.so (ab a) mpaign – Dust

Adora (chigh erosion, Missour (d) low erosion

Cumulated dust concentration divided by frequency of u-rh couple = Dust activity

Outdoor Campaign - Dust Damage Potential Partic

Particle size distribution

Slide

Mutato for indestry, Le Bourget-du-Lac, June 8th – 10 Dust Outato for a dea mpaign – Dust movement identified risks

- PSD maximum at 65-200µm
- PSD bimodal
- Open terrain with winds larger than 10m/s
- Low relative humidity and high wind present at the same time
- Low clay content
- High Quartz content

Darmenova 2009 Wiesinger 2020

Sera III: On-site training for industry, Le Bourget-du-Lac, June 8th 80th 2022 Sandtto free part theory & Testloop design

	diameter	d	[m]	10^{-6} - 10^{-5}
	sand mass	γ	$[\mathrm{gcm^{-2}}]$	0.05-30
	density	ρ	$[{ m kg}{ m m}^{-3}]$	2320-2650
particle	velocity	v	$[\mathrm{ms^{-1}}]$	0-30
	Moh's hardness	$H_{\rm p}$	[GPa]	0.61-12.11
	fracture toughness	$K_{\rm p}$	$[\mathrm{MPa}\mathrm{m}^{0.5}]$	-
	circularity	ci	-	0-1
	Young's modulus	$E_{\mathbf{t}}$	[GPa]	soda-lime glass: 70
target	Moh's hardness	$H_{\rm t}$	[GPa]	soda-lime glass: 5.5
	$\mbox{fracture toughness}$	$K_{\rm t}$	$[\mathrm{MPa}\mathrm{m}^{0.5}]$	soda-lime glass: 0.75
antiranment	temperature	T	$^{\circ}\mathrm{C}$	room temperature
environment	impact angle	β	0	0-90
	1	'		
b)	c)	,	d)	
	particle target environment	environment diameter sand mass density velocity Moh's hardness fracture toughness circularity Young's modulus Moh's hardness fracture toughness fracture toughness	$\begin{array}{ccc} \text{manueler} & u \\ \text{sand mass} & \gamma \\ \text{density} & \varrho \\ \text{velocity} & v \\ \text{Moh's hardness} & H_{\text{p}} \\ \text{fracture toughness} & K_{\text{p}} \\ \text{circularity} & ci \end{array}$ $\begin{array}{c} \text{target} & \text{Young's modulus} & E_{\text{t}} \\ \text{Moh's hardness} & H_{\text{t}} \\ \text{fracture toughness} & K_{\text{t}} \end{array}$ $\begin{array}{c} \text{environment} & \text{temperature} & T \\ \text{impact angle} & \beta \end{array}$	$\begin{array}{cccc} \text{manueter} & d & [m] \\ \text{sand mass} & \gamma & [\text{g cm}^{-2}] \\ \text{density} & \varrho & [\text{kg m}^{-3}] \\ \text{velocity} & v & [\text{m s}^{-1}] \\ \text{Moh's hardness} & H_{\text{p}} & [\text{GPa}] \\ \text{fracture toughness} & K_{\text{p}} & [\text{MPa m}^{0.5}] \\ \text{circularity} & ci & - \\ \end{array}$ $\begin{array}{ccc} \text{Young's modulus} & E_{\text{t}} & [\text{GPa}] \\ \text{Moh's hardness} & H_{\text{t}} & [\text{GPa}] \\ \text{Moh's hardness} & H_{\text{t}} & [\text{GPa}] \\ \text{fracture toughness} & K_{\text{t}} & [\text{MPa m}^{0.5}] \\ \end{array}$ $\begin{array}{cccc} \text{environment} & \begin{array}{cccc} \text{temperature} & T & ^{\circ}\text{C} \\ \text{impact angle} & \beta & ^{\circ} \end{array}$

SFERA III: On-site training for industry, Le Bourget-du-Lac, June 8th – 10th 2022

Erosion Testing- Testloop A

Wiesinger et al. 2016

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera<u>3.so</u>llab.eu/ Erosion Testing – Testloop B

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022

Erosion Testing- Testloop B

Slide

Investigated influence of impact speed, smaller erosive material.

Disadvantages: no satisfying dust concentration control, no easy change of dust type, deterioration of test dust.

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Accelerated aging tests

Sand erosion test to simulate sand storms

- Wind velocity up to 45 m/s. ٠
- Highly homogeneous flow. ٠
- All different types of test dusts ٠ applicable and easy to be changed.
- Screw-conveyer dust injection ٠ facilitates concentration control.
- No test dust degradation. ٠

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Accelerated aging tests

Sand erosion test to simulate sand storms

control box for electronics

Item table construction

Rack structure for the exposure of reflector samples from different groups

- State of the art sample exposure is usually conducted in racks.
- For some aspects not 100% reproducing real plant conditions.
- Shielding, orientation, height, SPP operational positioning.
- Many simulations but lacking field data.

Karim et al. 2015 Matal et al. 2020

Erosion tree in Zagora equippedwith27reflectors.

Exposure on three different heights *z* above ground (**1.2**, **2.4** and **3.6**m).

- For every *z*, four principal orientations (North, East, South and West).
- For every orientation, two elevation angles ϑ (45° and 90°). In addition one elevation at 180° per *z*.
- In addition wind measurement
- Reflector characterization after 1 year.

http://sfera3.sollab.eu/ height and orientation

Slide

Open question: where does this anisotropic erosion effect com from?

- Wind velocities greater than 5m/s are present over 25% of the time.
- Most prominent direction is SW ca. 10%.

MISLEADING

- Only winds stronger than 17m/s.
- Strong winds (>22m/s) exclusively from NW.

Slide

HIGH VELOCITIES MORE IMPORTANT THAN DURATION

SFERA III – On-site training for industries – Characterization and accelerated aging of parabolic trough receiver materials

Florian Wiesinger,

Johannes Pernpeintner

johannes.pernpeintner@dlr.de

STERA III - On-site training for industries > 240 - Empeintner • Parabolic Trough Receive 1aufication > 8.06.2022 Le Bourget-du-Lac

Knowledge for Tomorrow

Outline

- Introduction to parabolic trough receivers
- Qualification methods
 - Measurement of receivers
 - $\,\circ\,$ Optical efficiency
 - \circ Heat loss
 - $\,\circ\,$ Accelerated aging
 - Measurement of small samples

DLR.de • > SFERA III - On-site training for industries > Wiesinger/Pernpeintner • Parabolic Trough Receiver Qualification > 8.06.2022 Le Bourget-du-Lac Chart 123

Introduction to Parabolic Trough Receivers

Demand for independent measurement

The receiver is ...

- produced by specialized companies, not the EPC
- not easy to do right
- a core component of a parabolic trough power plant
- part of the efficiency chain and directly impacts the overall efficiency of the plant
- ~10% of capital investment of power plant

DLR.de • > SFERA III - On-site training for industries > Wiesinger/Pernpeintner • Parabolic Trough Receiver Qualification > 8.06.2022 Le Bourget-du-Lac Chart 124

Introduction to Parabolic Trough Receivers

Environment during operation

- Irradiated by ~ 80 suns
- Heat transfer fluid VP-1: 250...400 °C
- Heat transfer fluid silicon oil: up to 450 °C
- Heat transfer fluid solar salt: up to 550 °C

DLR.de • > SFERA III - On-site training for industries > Wiesinger/Pernpeintner • Parabolic Trough Receiver Qualification > 8.06.2022 Le Bourget-du-Lac Chart 125

Introduction to Parabolic Trough Receivers

Core technologies

- Selective absorber coatin
- Glass-to-metal seal
- Anti-reflective coating on glass

Durability topics

- ~25 years, ~10,000 day/night-cycles
- Absorber coating aging
- AR-coating aging (cleaning, sand storms, UV, aerosols, salt, acid rain, etc.)
- Vacuum quality
 - Glas-to-metal seal and bellow tightness
 - H2 diffusion
 - Corrosion

DLR.de • SFERA III - On-site training for industries > Wiesinger/Pernpeintner • Parabolic Trough Receiver Qualification > 8.06.2022 Le Bourget-du-Lac

Introduction to Parabolic Trough Receivers

Performance parameters

- Optical efficiency $\eta_{\text{opt,rec}}(T)$
- Thermal loss power P_{th,loss}(T)

$Q_{\rm coll} = \eta_{\rm opt,rec} Q_{\rm in} - Q_{\rm th,loss}$

heat loss

Typical numbers transmittance τ ~ 0.96 absoprtance $\alpha \sim 0.96$ net area factor $\psi_{net} \simeq 0.96$ $\psi_{\text{net}} = I_{\text{aperture}}/I_{\text{rec}}$ emittance

ε ~0.07...0.11 opt. efficiency $\eta_{\text{opt,rec}} \simeq 0.89$ $Q_{\text{th,loss}} \sim 200...1500 \text{ W}$ (@250° C...400° C)

DLR.de • > SFERA III - On-site training for industries > Wiesinger/Pernpeintner • Parabolic Trough Receiver Qualification > 8,06.2022 Le Bourget-du-Lac Lab testing of parabolic trough

LAGE CENER, OLFS CIEMAT, ENEA, IEECAS, NREL

Small glass/absorber samples Performance Tests Spectrophotometer τ α ε

Accelerated Ageing

- Salt spray
- UV
- Sandstrom chamber
- Vacuum furnace (Overheating + Arrhenius)

Heat Loss Measurement

Principle

- Electrical cartridge heater assembly in absorber tube
- At steady state:

Electrical heating power = heat loss power

Features

- End heaters for homogeneous longitudinal temperature profile
- Counter heaters for adiabatic conditions at ends
- Temperature measurement at inner side of absorber

Difficulties

- Temperature measurement of absorber
- Standardization not yet good enough for sufficient reproducibility between labs

/Pet opeintner • Parabolic Trough Received floation > 8.06.2022 Le Bourget-du-Lac

On-site training for industries >

Heat Loss Measurement - Typical Result

-Eichel et al.: Heat Loss Measurements on Parabolic Trough Receivers, 2010, Proceedings of SolarPACES Conference, France, Perpignan

DLR CARC

Peripeintner • Parabolic Trough Received fication > 8.06.2022 Le Bourget-du-Lac

n-site training for industries >

Non-Destructive Optical Efficiency

Various setups in use Ment

Linear focus solar simulator, IEECAS,

Non-concentrating outddoor test bench, NREL/ CIEMAT-PSA

Spectroscopy through glass, CENER [1]

Concentrating outdoor test bench, DLR/CIEMAT-PSA

SFERA BL- On-site training for industries > get Pet opeintner • Parabolic Trough Receiver Sufficiention > 8.06.2022 Le Bourget-du-Lac

Optical Efficiency Measurement

Measurement Principle

- Heating by Metal-Halide Lamps and Elliptical Concentrator
- No Thermal Losses, as Ambient Temperature
- Measuring Flow Rate of Water
- Measuring Temperature Increase (ΔT ~ 4...7 K)
 → Absorbed Power
- Exact Lamp Power unknown, but constant
 - → Comparative Measurements to one Virtual 70-mm Master Receiver

Overheating test bench

- Goal: Simulate ageing of absorber coating due to high temperature (e.g. 400 °C for 25 years)
- Method: Heating of receivers with heating cartridge (similar to heat loss testing) to significantly above operating temperature
- Model: Arrhenius equation
- Necessary for Arrheinus:
 - activation energy E_n
 - validity

$$a_n = \exp\left[\frac{E_n}{R}\left(\frac{1}{T_{ref}} - \frac{1}{T_n}\right)\right]$$

Acceleration according to Arrhenius equation

On-site training for industries >

Overheating Parameters

- Overheating
 - 478 °C
 - 1000 h
- Thermal cycling
 - between 200°C and 478°C
 - 100 cycles

Bellow Fatigue Test

 SFERA III - On-site training for industries > singeour empeintner
 Parabolic Trough Receive Qualification > 8.06.2022 Le Bourget-du-Lac

Bellow fatiuge test bench

- Goal: Check bellow and glass-to-metal seal tightness after multiple compression/ expansion cycles
- Receiver heated to 200 °C
 - \rightarrow expansion half of maximum
- Absorber ends heated to 400 °C
 → maximum temperature
- Fix glass envelope
- Move absorber (0.3...1 Hz)
- Monitor heating power for detection of leakage
- Test: 20 000 cycles and wait 24 h
- Pass, if increase in HL < 30%

Testing anti-reflective coating abrasion with the Taber Linear Abrasor

- Goal: Test AR-coating for abrasion stress
- Machine: Taber Linear Abrasor
- Transmittance measurement with spectrophotometer (Lambda 950/1050)
- Rubber preparation with abrasive paper
- Parameters
 - \circ rubber type
 - \circ rubber diameter
 - \circ cycle number
 - \circ weight

3⁄4''

SEERA.III - On-site training for industries > ngeonempeintner • Parabolic Trough Receive Lauri cation > 8.06.2022 Le Bourget-du-Lac

Examplary results

> SFERA III - On-site training for industries > ing environmenther • Parabolic Trough Receive Quantication > 8.06.2022 Le Bourget-du-Lac.

Examplary results

> SFERA III - On-site training for industries > ingeo tempeintner • Parabolic Trough Receive Quartication > 8.06.2022 Le Bourget-du-Lac.

 SFERA III - On-site training for industries > singeo - empeintner • Parabolic Trough Receive Qualification > 8.06.2022 Le Bourget-du-Lac

Solar Facilities for the European Research Area

Training for Industries "Optimization of CST plant output by optical and thermal characterization and target-oriented O&M" 08 – 10 June 2022, Bouget-du-Lac, France

Components aging: Receiver coatings Florian Wiesinger (DLR), Simon Caron (DLR)

 ${\bf S} \text{olar} \ {\bf F} \text{acilities}$ for the European Research Area

NETWORKING

Knowledge for Tomorrow

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

Outline

• Introduction

• Materials and Methods

- Substrates and Coatings
- Optical Characterization
- Durability Test Program

• Results and Discussion

- Solar Cycling Tests
- Climate Chamber Tests
- Summary for Gen 2 Coatings

Ciemat

RAISELIFE

Conclusion & Outlook

https://torresolenergy.com/gemasolar/

Vellourec

Deutsches Zentrum DER für Luft- und Raumfahrt German Aeropase Center

BrightSource

ig: Receiver coatings > Caron > 28/04/2

Materials and Methods Substrates

- SRSG* (Water/steam)
 - Ferritic-martensitic alloys
 - Manufactured by Vallourec
 - Standard Boiler technology
 - Max. Temp. 600 650 °C
 - Cheap alloys require coatings T91/P91 (X10CrMoVNb9-1)

SRSG*: Steam Receiver Super Generator

- MSR** (Molten Salt)
 - Nickel-Chromium superalloys
 - Inconel 617 (Inc617); Haynes 230 (H230)

Aerospace Industry, Gas Turbines

• High Temp. (1000 – 1150 °C)

SPECIAL lloys, but less corrosion

HAYNES International

MSR**: Molten Salt Receiver

g: Receiver coatings > Caron > 28/04/

http://www.vallourec.com/fossilpower/EN/Products/Pages/tp91.aspx http://www.vallourec.com/fossilpower/EN/Products/Pages/vm12-shc.aspx

Materials and Methods Coatings

- A ceramic spray consisting of a primer coating and a high solar absorptance (HSA) top coating (Coating A)
- A slurry aluminide primer coating protecting the steel substrate from hot oxidation, in combination with the above ceramic HSA top coating (Coating B)
- A magnetron-sputtered multi-layered thin film cermet solar selective coating (SSC) applied on a polished substrate (Coating C)
- A multi-metallic Cr-Mn diffusion coating applied with the pack cementation process (Coating D)

Coating B

- A combination of the above slurry aluminide primer (b) with a thin film cermet SSC on top (Coating E)
- A combination of the multi-metallic diffusion coating (d) as a primer coating combined with the ceramic HSA top coating (a) (Coating F)

Coating/Substrate	T91	VM12	Inc617	H230
Coating A	Yes	Yes	Yes	Yes
Coating B	Yes	Yes	No	No
Coating C	Yes	No	Yes	No
Coating D	Yes	Yes	Yes	No
Coating E	Yes	No	Yes	No
Coating F	No	Yes	No	No

Coating A


```
Coating C Coating D
```

Coating E

Coating F

Coating	Substrate	Thickness (DFT, μm)	Selective ?	Surface preparation	Coating application	Thermal treatment
А	T91 VM12 Inc617 H230	55 (Primer) 35	No	Grit blasting	Spraying	Curing
В	T91 VM12	85 55	No	Grit blasting	Spraying	Curing (x2)
С	T91 Inc617	0.6	Yes	Polishing, mirror finish	Sputtering	-
D	T91 VM12 Inc617	35	No	Glass bead blasting	Cementation	Pre-oxidation
E	T91 Inc617	~ 65	No	Polishing of primer coating (B)	Spraying + Sputtering	-
F	VM12	~ 70	Yes	Glass bead blasting	Cementation + Spraying	Pre-oxidation + Curing

Materials and Methods Optical characterization

Materials and Methods Spectral measurements

• Baseline calibration

Ciemat

SDHR: Spectral Directional –Hemispherical Reflectance

• Weight functions:

- * α_{sol} : ASTM G173-03 direct, AM1.5
- ε_{th}: Blackbody spectrum (650/750 °C)
- 8-12° incidence angle (Near normal)

Materials and Methods Solar absorptance and thermal emittance

- Solar absorptance α_{sol}

• Thermal emittance ϵ_{th} (T)

• HSA: High Solar Absorptance (> 96%)

Materials and Methods Opto-thermal coating efficiency

• Opto-thermal efficiency:

$$\eta_{coating} \approx \frac{\alpha_{sol} \cdot \dot{q}_{sol}'' - \varepsilon_{th}(T_{abs}).\sigma.T_{abs}^4}{\dot{q}_{sol}''}$$

$$Z = \frac{\Delta \alpha_{sol}}{\Delta \varepsilon_{th}} = -\frac{\dot{q}_{sol}''}{\sigma T_{abs}^4} \text{ for Z:}$$

 Solar absorptance predominant for Central Receiver System (CRS)

- Allowable Flux Density (AFD) Vant-Hull, J. Sol. Energy Eng. 2002, 124(2): 165-169
 - for Molten Salt HTF (Corrosion)

Materials and Methods Durability Test Program

• The Distal II facility is located at Plataforma Solar de Almeria, owned by the Spanish research center CIEMAT.

Materials and Methods

Climate Chamber Tests

Ciemat

• Standard climate chamber tests performed on flat absorber samples

Test	$\mathbf{D}\mathbf{H}$	\mathbf{HF}	NSS	SE	Site characterization:
Standard	IEC 62108,	IEC 62108,	180 92237	Based on	2 Correcivity class
Standard	Test 10.7b	Test 10.8	150 72257	MIL-STD 810 G	
Duration	1000 hours	1500 hours	120, 480 hours	-	b. Erosivity class
Darameters	T _{amb} : 65 °C	T_{amb} : -40 to 65 °C	T _{amb} : 35 °C	20 m/s; 3x 70 g	
	RH: 85 %	RH: max. 85%	pH 6.5 to 7.2 at 25 °C	std blowing dust	

SE

NSS

Results and discussion *Pristine State (before test)*

Coating	Substrate	Thickness (DFT, μm)	Selective ?	Surface preparation	Coating application	Thermal treatment
А	T91 VM12 Inc617 H230	55 (Primer) 35	No	Grit blasting	Spraying	Curing
В	T91 VM12	85 55	No	Grit blasting	Spraying	Curing (x2)
С	T91 Inc617	0.6	Yes	Polishing, mirror finish	Sputtering	-
D	T91 VM12 Inc617	35	No	Glass bead blasting	Cementation	Pre-oxidation
Ε	T91 Inc617	~ 65	No	Polishing of primer coating (B)	Spraying + Sputtering	-
F	VM12	~ 70	Yes	Glass bead blasting	Cementation + Spraving	Pre-oxidation + Curing

Coating\Substrate	Optical characteri Measurand	zation Units	T91 <i>Tmax =</i>	VM12 650 °C	Inc617 <i>Tmax =</i>	H230 <i>750 °C</i>
Coating A	α _{sol} (AM1.5, direct)	[%]	96,4%	96,2%	97,2%	97,1%
(BSII)	ε _{th} (Tmax)	[%]	78,4%	76,4%	89,5%	89,5%
Coating B	α _{sol} (AM1.5, direct)	[%]	96,6%	96,2%	N.A.	N.A.
(INTA+BSII)	ε _{th} (Tmax)	[%]	76,0%	77,2%	N.A.	N.A.
Coating C	α _{sol} (AM1.5, direct)	[%]	94,9%	N.A.	94,7%	N.A.
(Fraunhofer)	ε _{th} (Tmax)	[%]	26,8%	N.A.	30,6%	N.A.
Coating D	α _{sol} (AM1.5, direct)	[%]	94,6%	94,7%	95,3%	N.A.
(Dechema)	ε _{th} (Tmax)	[%]	85,9%	84,8%	87,3%	N.A.
Coating E	α _{sol} (AM1.5, direct)	[%]	96,2%	N.A.	95,7%	N.A.
(INTA+Fraunhofer)	ε _{th} (Tmax)	[%]	4 1,6%	N.A.	<mark>3</mark> 8,9%	N.A.
Coating F	α_{sol} (AM1.5, direct)	[%]	N.A.	96,8%	N.A.	N.A.
(Dechema+BSII)	ε _{th} (Tmax)	[%]	N.A.	78,9%	N.A.	N.A.

Results and discussion Inc617 (A,C,D,E) Climate Chamber Tests / Inc617 & H2390A)

■ Coating A (Inc617)
Coating A (H230) ■ Coating C ■ Coating D ■ Coating E

(a) Combined testing, Inc617 and H230 substrates, α_{sol} (b) Combined testing, Inc617 and H230 substrates, ε_{th} (750°C)

Figure 29: Optical characterization of Inc617 and H230 flat coated samples before and after climate chamber tests. (a) Evolution of solar absorptance over the test sequence. (b) Evolution of thermal emittance over the test sequence.

Results and discussion Summary for Gen2 Coatings (1)

Variat	tion in solar a	lbsorptance ∆α _{sol}	Initial value	Solar	cycling	Isothe	rmal, 200	0 hours	500 cycles	Cl	imate (hamb	ers
Generation	Substrate	Coating	αsol	SC-DLR	SC-CNRS	T1	Т2	Т3	Cyclic	DH	HF	NSS	SE
Gen 2	Inc617	A (BSII, Inc617)	97,2%	-0,4%	-0,3%	-0,3%	-0,4%	-1,1%	On going	0,1%	0,0%	0,0%	-0,3%
Gen 2	H230	A (BSII, H230)	97,1%	-0,4%	On going	N.A.	N.A.	On going	On going	0,1%	0,1%	0,0%	-0,2%
Gen 2	Inc617	C (Fraunhofer)	94,7%	-4, <mark>2%</mark>	0,3%	-2,2%	-5 <mark>,7%</mark>	-9,9%	On going	-0,1%	-0,1%	- <mark>8,6%</mark>	0,1%
Gen 2	Inc617	D (Dechema)	95,3%	-0,2%	0,1%	-0,1%	-0,3%	-0,9%	On going	0,0%	0,1%	-0,4%	-0,3%
Gen 2	Inc617	E (INTA+Fraunhofer)	95,7%	-2,3 <mark>%</mark>	0,2%	-0,3%	-2,7%	-1,4%	On going	-0,1%	-0,6%	FAIL	-0,79

Variat	ion in therma	al emittance Δε _{th}	Initial value	Solar	cycling	Isothe	rmal, 200	0 hours	500 cycles	Cli	mate c	hambe	ers
Generation	Substrate	Coating	ε _{th} (750 °C)	SC-DLR	SC-CNRS	T1	T2	Т3	Cyclic	DH	HF	NSS	SE
Gen 2	Inc617	A (BSII, Inc617)	89,5%	1,0%	-0,2%	0%	0%	0%	N.A.	-0,3%	-0,5%	0,0%	-0,1%
Gen 2	H230	A (BSII, H230)	89,5%	0,4%	On going	N.A.	N.A.	On going	On going	-0,2%	-0,2%	-0,5%	-0,3%
Gen 2	Inc617	C (Fraunhofer)	30,6%	9,5%	1,3%	11 %	10%	12 <mark>%</mark>	N.A.	-0,1%	0,7%	6,2%	0,8%
Gen 2	Inc617	D (Dechema)	87,3%	-1,3%	0,1%	0%	0%	-1%	N.A.	0,3%	0,5%	-0,2%	D,3%
Gen 2	Inc617	E (INTA+Fraunhofer)	38,9%	25,7%	-1,8%	23%	22%	26%	N.A.	1,2%	2,2%	FAIL	<mark>8</mark> ,8%

Ranking: Inc617 (**A**,**C**,**D**,**E**) H230 (**A**)

Inc617/Gen 2 - Solar absorptance

Centro de Ir

• T91	,
-------	---

Varia	tion in solar	absorptance Δα _{sol}	Initial value	Solar	cycling	Isothe	rmal, 2000) hours	500 cycles	Cli	imate o	hambe	ers
Generation	Substrate	Coating	αsol	SC-DLR	SC-CNRS	T1	Т2	Т3	Cyclic	DH	HF	NSS	SE
Gen 2	T91	A (BSII)	96,4%	-0,3%	-0,2%	0,1%	0,0%	0,0%	-0,4%	0,0%	-0,1%	-1,4%	-0,8%
Gen 2	T91	B (INTA+BSII)	96,6%	-0,1%	0,0%	0,1%	-0,1%	-0,1%	-0,7%	0,0%	0,1%	-0,2%	-1,3% <mark>/</mark>
Gen 2	T91	C (Fraunhofer)	94,9%	- <mark>6,8%</mark>	-0,3%	0,0%	-0,9%	-1,0%	On going	-0,4%	-0,2%	FAIL	-0,4%
Gen 2	T91	D (Dechema)	94,6%	-0,4%	0,1%	-0,4%	-0,4%	-0,5%	-0,5%	0,1%	0,2%	-0,5%	-0,3%
Gen 2	T91	E (INTA+Fraunhofer)	96,2%	-3,6 <mark>%</mark>	0,5%	-0,2%	-0,6%	-0,7%	On going	0,1%	0,1%	FAIL	-1,4%

Variat	tion in therma	al emittance Δε _{th}	Initial value	Solar	cycling	Isothe	rmal, 2000) hours	500 cycles	Cli	mate c	:hambe	ers
Generation	Substrate	Coating	ε _{th} (650 °C)	SC-DLR	SC-CNRS	T1	T2	Т3	Cyclic	DH	HF	NSS	SE
Gen 2	T91	A (BSII)	78,4%	-0,2%	0,1%	N.A.	N.A.	N.A.	N.A.	-0,6%	1,4%	-0,1%	0,0%
Gen 2	T91	B (INTA+BSII)	76,0%	0,1%	-0,5%	N.A.	N.A.	N.A.	N.A.	-0,3%	0,0%	-0,9%	-0,5%
Gen 2	T91	C (Fraunhofer)	26,8%	<mark>5</mark> ,8%	0,7%	N.A.	N.A.	N.A.	N.A.	0,4%	0,1%	FAIL	0,4%
Gen 2	T91	D (Dechema)	85,9%	2,3%	-0,1%	N.A.	N.A.	N.A.	N.A.	-0,3%	0,6%	0,3%	0,4%
Gen 2	T91	E (INTA+Fraunhofer)	41,6%	11, <mark>0%</mark>	-1,3%	N.A.	N.A.	N.A.	N.A.	0,5%	0,6%	FAIL	2,6%

T91/Gen 2 - Solar absorptance

Ciemat a

Centro de Inve

PAC

T91/Gen 2 - Thermal emittance

T91 (A,B,C,D,E) Before After

Conclusion and Outlook

- <u>Conclusions:</u>
- <u>Inc617/H230</u>:
 - Best coating: Coating A
 - Brightsource (commercial): $\alpha_{sol} \ge 97 \%$

• <u>T91/VM12</u>:

- Slurry aluminide primer coating protects metal substrate better against corrosion (NSS).
- Most durable Coating : B (INTA+Brightsource)
- Best α_{sol} value: Coating F (>96.5%) (Dechema + Brightsource)
- Coating D stable, but lower efficiency
- Solar selective coatings C/F efficient ... but not durable (isothermal, NSS)

A PRAC

Criternal Centro de Investigaciones Energéticas, Medicambientales

• Outlook:

- Coating A commercialized
- Aging models in development, Service Lifetime Prediction (SLP)
- Estimation of LCOC (Levelized Cost of Coating)

Sample and data management

Sample and data management of reflectors :

		Characterizations	
	Measurement	Equipment	Number of measurement
1 - Engraving			
2- Photography	Macroscopic Visual Inspection	Canon	Front side /back side
3- Specular Reflectance	ρλ (660nm,15°,12.5mrad)	15R-USB D&S	3 or 5 Front side
4- Edge corrosion	Macroscopic Visual Inspection	Canon	8 corrosion Front side /back side (edges + spots)
5-Hemispherical réflectance/transmittance/ absorptance	ph([280,2500],8°,h) αh([280,2500],8°,h) τh([280,2500],8°,h)	Lambda 950 with IS (ϕ 150mm)	3 Front side (0°/90°/180°)
6-Colorimetry	ΔE : Color variation ΔG : Gloss variation	BYK-Garner	3 back side
7-Optical microscopy	Macroscopic Visual Inspection	Zeiss Axio Imager A.2M	Front side /back side
8- Contact angle	θ contact angle (°) surface energy (mN/m)	Mobile Surface Analyzer (MSA) KRÜSS	20 Front side

Engraving samples

Example of spectral Optical reflectance analysis of Solar mirrors :

- Thin and thick solar silvered glass mirrors are quite similar •
- Differences with the polymeric mirror, especially in the infrared •
- Aluminum mirror has a particular spectral reflectance, due to thin layers •

Perkin Elmer lambda 950

<u>_</u>22

Solar-weighted hemispherical reflectance, ρ_{sh}

$$\rho_{s,h} = \int_{\lambda = 280nm}^{2500nm} \frac{\rho_{\lambda,h}(\lambda) \times S(\lambda)}{S(\lambda)} d\lambda$$

Where:

 $S(\lambda)$

 $\rho_{\lambda,h}(\lambda)$ Hemispherical reflectance measurement Solar spectra ASTM G173-03

Example of spectral Optical analysis of absorbers :

- Black paint : high solar absorptance in all wavelength ۲
- Selective coating : various spectral absorptance with differences between ۰ new and aged samples

Perkin Elmer lambda 950

Bruker IR Vertex 70

Spectral hemispherical absorptance, $\alpha_{\lambda,h\ell}\lambda, \theta_{\nu}h$

Solar-weighted hemispherical absorptance, $\alpha_{s,h}$ and thermal emittance $\varepsilon(T)$

$$\alpha_{s,h} = \int_{\lambda = 280nm}^{2500nm} \frac{[1 - \rho_h(\lambda)] \times S(\lambda)}{S(\lambda)} d\lambda \qquad \varepsilon(T) = \int_{\lambda = 280nm}^{16\,000\,nm} \frac{[1 - \rho_h(\lambda)] \times B_T(\lambda)}{B_T(\lambda)} d\lambda$$

Where: Total solar absorbance Total emittance at temperature T $\rho_{\rm h}(\lambda)$ Hemispherical reflectance measurement $S(\lambda)$ Solar spectra ASTM G173-03 $B_{T}(\lambda)$ Black body spectra at temperature T

 $\alpha_{s,h}$ $\epsilon(T)$

Example of spectral Optical transmittance analysis of Solar glass :

Spectral hemispherical transmittance, $\tau_{\lambda,h}$

- All samples have very low transmittance in under 320 nm
- High spectral transmittance in 500 to 1000 nm
- Spectral differences between new, aged and soiled glasses

Solar-weighted hemispherical transmittance, $\tau_{s,h}$

$$\tau_{s,h} = \int_{\lambda = 280nm}^{2500nm} \frac{\tau_{\lambda,h}(\lambda) \times S(\lambda)}{S(\lambda)} d\lambda$$

Where:

 $\tau_{\lambda,h}(\lambda)$ Hemispherical transmittance measurement $S(\lambda)$ Solar spectra ASTM G173-03

Perkin Elmer lambda 950

Sample and data management : INDOOR tests

Climatic chamber

Spectrophotometer

D&S 15R-USB

Byk Spectro Guide Gloss

Camera

					Л																	(2
	ſ																						Y													
	'I		S	il.					Rs (660r	າm, 15°,	12,5 mra	d))	1		Co	lorimetr	ie										Fronts de	corrosio	on					Ż
Echantillon	temps (h)	SI-0°	SI-90°	SI-180°	Reflection moyenne	Δρ	1.00	2.00	3.00	4.00	5.00	Моу	Ecart type	Δρ	L	DL	а	Da	b	Db	DE	G	ΔG	Epai co	sseur de rrosion f	es fronts ace ava	s de nt	surface Initiale (cm ²)	% Surface Restante face miroir	Epai cor	sseur de rosion f	es front ace arri	s de ère	surface Initiale (cm ²)	% Surface Restante fac arrière	e ace
Tsing-1	0.00	94.13	94.15	94.17	94.15		95.70	95.60	95.60	95.60	95.60	95.62	0.04		94.35	0.00	-0.68	0.00	-0.58	0.00	0.00	48.39		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-2	0.00	93.97	94.04	93.99	94.00		95.40	95.40	95.30	95.30	95.40	95.36	0.05		94.50	0.00	-0.67	0.00	-0.23	0.00	0.00	52.32		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-3	0.00	93.87	93.90	93.86	93.88		95.30	95.30	95.30	95.30	95.30	95.30	0.00		94.33	0.00	-0.68	0.00	-0.57	0.00	0.00	49.18		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-4	0.00	94.08	94.11	94.08	94.09		95.50	95.50	95.50	95.50	95.50	95.50	0.00		94.47	0.00	-0.68	0.00	-0.52	0.00	0.00	49.23		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-5	0.00	94.07	94.08	94.08	94.07		95.40	95.60	95.60	95.60	95.60	95.56	0.09		94.35	0.00	-0.68	0.00	-0.46	0.00	0.00	49.18		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-6	0.00	94.18	94.16	94.21	94.18		95.70	95.60	95.60	95.70	95.70	95.66	0.05		94.18	0.00	-0.67	0.00	-0.46	0.00	0.00	46.45		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Average	0.00	94.05	94.07	94.07	94.06		95.50	95.50	95.48	95.50	95.52	95.50	0.04		94.36	0.00	-0.68	0.00	-0.47	0.00	0.00	49.13		0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Deviation	0.00	0.11	0.10	0.13	0.11		0.17	0.13	0.15	0.17	0.15	0.14	0.03		0.11	0.00	0.00	0.00	0.13	0.00	0.00	1.89		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tsing-1	203.00	94.34	94.32	94.32	94.32	0.17	95.70	95.80	95.70	95.60	95.60	95.68	0.08	0.06	94.12	-0.23	-0.72	-0.04	-0.39	0.20	0.31	37.31	-11.08	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-2	203.00	94.14	94.11	94.13	94.13	0.13	95.50	95.40	95.30	95.50	95.40	95.42	0.08	0.06	94.40	-0.09	-0.70	-0.03	-0.16	0.07	0.12	42.40	-9.92	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-3	203.00	94.00	94.06	93.83	93.97	0.09	95.40	95.40	95.40	95.40	95.40	95.40	0.00	0.10	94.15	-0.19	-0.71	-0.03	-0.46	0.11	0.22	39.42	-9.76	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-4	203.00	94.17	94.14	94.15	94.15	0.07	95.40	95.50	95.60	95.40	95.40	95.46	0.09	-0.04	94.30	-0.16	-0.72	-0.04	-0.37	0.15	0.22	39.96	-9.28	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-5	203.00	94.23	94.27	94.25	94.25	0.17	95.60	95.60	95.60	95.40	95.60	95.56	0.09	0.00	94.19	-0.16	-0.70	-0.02	-0.37	0.09	0.19	39.73	-9.45	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Tsing-6	203.00	94.31	94.36	94.34	94.34	0.15	95.40	95.40	95.70	95.60	95.60	95.54	0.13	-0.12	94.03	-0.15	-0.71	-0.04	-0.36	0.10	0.18	37.54	-8.90	0.00	0.00	0.00	0.00	25.00	100%	0.00	0.00	0.00	0.00	25.00	100%	
Average	0.00	94.20	94.21	94.17	94.19	0.13	95.50	95.52	95.55	95.48	95.50	95.51	0.08	0.01	94.20	-0.16	-0.71	-0.03	-0.35	0.12	0.21	39.39	-9.73	0.00	0.00	0.00	0.00	25.00	1.00	0.00	0.00	0.00	0.00	25.00	100%	
Deviation	0.00	0.12	0.12	0.18	0.14	0.05	0.13	0.16	0.16	0.10	0.11	0.10	0.04	0.08	0.13	0.05	0.01	0.01	0.10	0.05	0.06	1.86	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Sample and data management : OUTDOOR tests

Cadarache solar field

Outdoor samples exposure

D&S 15R-USB

Byk Spectro Guide Gloss

selection of a satisfactory outdoor site

\blacktriangleright exposed for more than 5 years or more \rightarrow Currently Aging > 7 years

1	2 4	A	F	G	н	- I -	J	K	L	M	N	0	Р	Q	R	S	т	U	V I	W I	Х	Y	Z	AJ	AK	AL	AM	AN	AO AP	AQ	AR	AS
	1				Rempliss	age au	Itomatique			Bord p	rotégé	Bord	oupé:					Pasp	our mir	oirs alun	ninium	ni polym	ère							large	ur (bord	(2 et 4)
	2																													F	ace av:	ant
	3	Site :										Face	AVAN	IT						Face	ARRIEI	RE			Dégra	idation r miroir	apporté de 1m²	eàun	je d	ì	2	
	4	Référence /	Date de	Temps total	p(660nm) avant	Ecart	p(660nm) après	Ecart	Δps	Front	de dég	radation	(cm)	Autres dégrad	Surface	ps équivalent	Perte	Front	t de dég	gradation) (cm)	Autres dégrad	Surface		front	Surfac e	ps équiva	Δps équiva	d proté	1		3
	5	Caractéristiques	retrait	d'exposi tion (jrs)	nettoyag e (%)	(%)	nettoyage (%)	(%)	(%)	Bord 1	Bord 2	Bord 3	Bord 4	ations (mm²)	(%)	e (%)	(%)	Bord 1	Bord 2	Bord 3	Bord 4	ations (cm³)	(%)		(mm)	restan te (%)	lente (%)	lente (%)	B ^R	gravur	e 4	
<u> </u>	6	01_02A_AD01-9	29/03/17	105	87.4	0.6	94.5	0.1	0.0	0	0	0	0	0	100	94.5	0.0	0	0.1	0	0.1	0	100	1	0	100	94.5	0.0				
	7	Longueur (cm)	18/10/17	308	86.8	0.5	94.6	0.2	0.1	0	0	0	0	0	100	94.6	0.1	0	0.1	0.1	0.1	0	100		0	100	94.6	0.1				
	8	Largeur (cm)	18/07/18	581	84.7	0.8	94.6	0.1	0.1	0	0	0	0	0	100	94.6	0.1	0	0	0	0	0	100		0	100	94.6	0.1				
	9	Surface (cm²)	17/09/18	642	86.6	0.7	94.6	0.1	0.1	0	0	0	0	0	100	94.6	0.1	0.1	0.1	0.1	0.05	0	99		0	100	94.6	0.1				
	10	Commentaires :	07/02/19	785	92.8	0.6	94.1	0.7	-0.4	0	0	0	0	0	100	94.1	-0.4	0.1	0.3	0.1	0.1	0	99		0	100	94.1	-0.4				
	- 11		22/07/19	950	87.8	0.3	94.1	0.1	-0.4	0	0	0	0	0	100	94.1	-0.4	0.8	1.3	0	0.6	0	96		0	100	94.1	-0.4				
	12		27/11/19	1078	90.5	1.2	94.5	0.2	0.0	0	0.1	0	0	0	100	94.4	-0.1	1	1.3	0	0.9	0	95		0	100	94.5	0.0				
	13																														I .	1

Example of notations of reflectors :

Overall qualitative assessment :

- 1 (green) = good
- 2 (orange) = medium
- 3 (red) = bad
- x = not tested

- Evaluating the degradation of :
- 1. the general appearance
- 2. the loss of specular reflectance
- 3. the colorimetric variation of the paint

Test \ mirror	A	В	С	D	E	F
Temperature	2	?	2	1	1	1
UV Irradiance front side	2	2	X	X	2	1
UV Irradiance back side	3	3	X	X	2	3
Damp Heat	х	X	3	3	2	2
Neutral Salt	2	Х	2	2	2	2
Outdoor	1	2	2	2	2	3

- Back side UV irradiance and Damp Heat tests are the most aggressive for mirrors
- The Damp Heat test leads to non-representative damages from outdoor
- The type of degradation obtained in Neutral Salt Spray & outdoor in particular at PIMENT are consistent E. Le Baron CEA

SFERA-III

Solar Facilities for the European Research Area

	Thursday, June 9, 2022									
	09:15 – 9:45	Overview of CEA studies on accelerated ageing and soiling of solar materials	CEA	30 min						
	09:45 – 10:15	Automatic corrosion detection system for solar reflectors	DLR	30 min						
1	10:15 - 10:30	- Coffee break -		15 min						
	10:30 – 12:30	'hands-on' experience on laboratory and portable characterization tools	CEA/ DLR	120 min						
	12:30 – 13:30	- Lunch break -		60 min						
	13:30 - 14:30	Durability modeling method and Lifetime extrapolation	CEA	30 min						
	14:30 - 15:00	Lifetime extrapolation of reflectors (erosion and corrosion)	DLR	30 min						
	15:00 - 17:15	INES Visit	CEA	135 min						

cea

Overview of CEA studies on accelerated ageing and soiling of solar materials

Studies on soiling of reflectors

Optical Characterizations of soiling of reflectors :

Soiling sensor prototype : Specular Reflectance and particles counting on Solar Mirrors :

Optical Characterizations of soiling of reflectors :

Soiling sensor prototype : Specular Reflectance and particles counting on Solar Mirrors :

Pros :

- Quickly and precisely reflectance measurement of mirrors
- Large range of incident and detection angles (15° to 65°) and wavelengths (10 leds : 365-850 nm)
- No contact between the mirror and the optical device no risk to contaminate the equipment and mirror
- Image taking : particles counting to know the level of soiling and percentage of covered area

E. Le Baron CEA "New Equipment for Measurement of Soiling and Specular Reflectance on Solar Mirrors", E. Le Baron, A. Grosjean, D. Bourdon, A-C. Pescheux, F. Vidal, A. Disdier, 'in Solar PACES 2017'.

Effect of sand from different Moroccan solar sites on the soiling and degradation of mirrors :

Analyses :

- Particle size distribution \rightarrow Sieving method
- Particle morphology \rightarrow Optical microscope
- Mineralogical composition \rightarrow FTIR-ATR and XRD

Locations	Particle size	Morphology	Hardness			
Boujdour	Fine	Smooth	~ 5			
Laâyoune	Fine	Smooth	~ 5			
Ouarzazate	Coarse	Smooth/sharp	~ 7			
Skoura	Coarse	Smooth/sharp	~ 7			
Temara	Medium	Angular	~ 4			

Temara coastal site is a very dangerous site :

- Violent wind gusts
- Angular sand particles
- Serious risk of corrosion with a high level of saline/brine atmosphere

WASC

E. Le Baron CEA "Characterization of Different Moroccan Sands to Explain their Potential Negative Impacts on CSP Solar Mirrors", A.C Pescheux, E. Le Baron, O. Raccurt, Solar Energy, Volume 194, December 2019, Pages 959-968

Spectrophotometer

Effect of sand from different Moroccan solar sites on the soiling and degradation of mirrors

E. Le Baron CEA "Exposure conditions effect on soiling of solar glass mirrors", M.Karim, C.Delord, O.Raccurt, S.Naamane, (2017), in 'Solar PACES 2017'

Studies on accelerated ageing of absorbers

Solar Facilities for the European Research Area

E. Le Baron CEA

"Round Robin Test for the Comparison of Emittance Measurement Apparatuses", Le Baron E., Giraud P., Adier M., Raccurt O.; Barriga, J.; Echegut, P.; Meneses, D. D. S.; Capiani, C.; Sciti, D.; Soum-Glaude, A.; Escape, C.; Jerman, I.; Larsen, R.; Nørgaard, J.; Lopez, G. A.; Echaniz, T.; Tello, M. J.; Matino, F.; Maccari, A.; Mercatelli, L. & Sani, E. (2017), in 'Solar PACES 2017'. (2017), in 'Solar PACES 2017'.

Studies on accelerated ageing of glass

Spectrophotometer

Indoor Accelerated aging of solar glass

NSS / Thermal / UV / Damp heat tests -> 5 conditions of tests

Durability studies of anti-soiling coatings of cylindrical-parabolic absorber glass (PTC)

TEST	EQUIPMENT	STANDARD	TESTING TIME
NSS	Weiss SC450	ISO 9227	3000 h
Constant temperature 200 -250-300°C	Nabertherm		1500 h
UV-5X	BIA Climatic UV 5X		1600 h
Damp Heat	Climacel	IEC 62108 10.7b	2000 h
Xenon radiation with water spray	Atlas Suntest XXL+	ISO 16474-2	2000 h

Choice of the most durable coating :

 B & C coatings are much better than the commercial coating A and the new coating B (sol-gel solution composed by SiO₂ nanoparticles)

- Evolution of hemispherical transmittance over time t
- Evolution of the value of the contact angle over time t

Accelerated aging tests and characterizations of innovated anti-soiling coatings for solar receiver glasses, A.C Pescheux, O. Raccurt, D. Bourdon, E. Le Baron, Mater. Chem. Phys. 256 (2020) 123646

Spectrophotometer

Optical Characterizations of soiling of solar glass

Studies of water high pressure jet cleaning of absorber glass windows:

- distances,
- Inclinations,
- number of passes
- reduction of water consumption

40 cm								1 m									
25°		45° 65°			25°		45°			65°							
1p	2p	Зр	1р	2p	Зр	1p	2p	Зр	1p	2р	Зр	1р	2p	Зр	1p	2p	Зр
хЗ	xЗ	xЗ	хЗ	xЗ	хЗ	хЗ	xЗ	xЗ	xЗ	xЗ	xЗ	хЗ	xЗ	xЗ	xЗ	xЗ	хЗ

Control panel : Speed and translation

Cleaning test bench with water pressure jet

Glass sample with attachment

Water pressure jet

Evolution of hemispherical transmittance over time t

- **Increase in transmittance after cleaning (+25%)**
- Slightly better results for cleaning at 1m and 45 $^{\circ}$ tilt

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Automatic Corrosion Detection System for Solar

Reflectors

Florian Wiesinger, DLR

Knowledge for Tomorrow
Contents

Motivation

Methodology and Setup Description

First results

Motivation – Reflector Structure

- Glas as corrosion protection
- Ag as reflecting layer and Cu as UV-protection and substrate for basecoat.
- Basecoat as humidity barrier (up to 10% Pb).
- Primecoat (TiO₂) abrasion and humidity protection

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 Motivation – Novel Coating Types Traditional sample containing lead Non lead sample

Sample after 2 years exposure in Almeria: coastal site, corrosion class C5 after ISO 9223

Higher degradtion rate for novel non-lead reflectors, especially on edges.

Slide

Motivation – Novel Coating

Sample after 480 hours of CASS test

Higher degradtion rate for novel non-lead reflectors, especially on edges.

Motivation – High Degradation

Rates

Slide

Needs:

Detect and quantify corrosion at an early stage.

Motivation – High Degradation

Doto State of the art:

- Count corrosion spots per eye
- Mesure edge penetration with scale

Problems: Result highly depending on operator

- Ilumination changes
- different sample materials
- spot / no spot
- one spot / two spots
- calculation of area imposible

 \rightarrow Development of automatic image detection algorithm

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Slide

10 x 10 cm² sample results in ca. 5000 x 5000 pixel area. \rightarrow 1 pixel = 20µm

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Methodology – Image Treatment

To filter out interesting area transform RGB to HSV color space

<u>Methodology – image treatment</u>

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

<u>Methodologv – image tr</u>eatment

Next step is to detect the corner points of the large inner black area, assuming that it is a tetragon.

Slide

Methodology – image treatment

Transformation from tetragon to square to correct for the distortion and crop.

Aged image (AI), foto of a sample type in ist aged state.

Aged image (AI) cropped and transformed

Problem: What is defect, what is shadow or coating or initial defect?

http://sfera3.sollab.eu/ Methodology — image treatment Reference image (RI), foto of a certain sample type in its Interview of the treatment Aged image (AI), foto of a sample type in its Ist gaed state.

original state without any defects or corrosion.

ist aged state.

Reference image (RI) cropped and transformed

Slide

Methodology – image treatment

Divide Aged image (AI) by Reference Image (RI) and detect every pixel with less than certain brightness ratio of initial brightness as corrosion.

Inner corrosion (dark green) and edge corrosion (light green)

Slide

<u>GUI:</u>

- Simple selection of RE and corresponding AI
- Adapt basic parameters like sample size and cam res → should be automated as well.
- Selection of the coated edges.
- Marking of maximum edge penetration.
- Export important parameters in a table.

Example Pictures

4. Edge-threshold and inclusions

DLR

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

High Degradation Rates

Best solution not clear so far.

Durability modeling method and lifetime extrapolation

Durability modeling method and lifetime extrapolation :

- **PENALTY** is the level at which an assessment is made of the economic effects of a component failure → set a reliability level that must be maintained for a given number of years.
- **FAILURE** is the level at which performance requirements are determined. If the requirements are not fulfilled, the particular component or part of component is regarded as having failed.
- **DAMAGE** describes the stage of failure analysis at which various types of damage, each capable of resulting in failure, can be identified.
- **CHANGE** is related to the change in the material composition or structure that can give rise to the damage of the type previously identified.
- **EFFECTIVE STRESS** is the level at which various factors in the microclimate, capable of being significant for the durability of the component and its materials can be identified.
- LOADS is the level that describes the macro-environmental conditions (climatic, chemical, mechanical), and which is therefore a starting point for description of the microclimate or effective stress as above.

B. Carlsson, K. Moller, M. Köhl, M. Heck, S. Brunold, U. Frei, J.-C. Marechal, and G. Jorgensen, "The applicability of accelerated life testing for assessment of service life of solar thermal components," Solar Energy Materials and Solar Cells, vol. 84, no. 14, pp. 255 – 274, 2004

Durability modeling method and lifetime extrapolation :

Example of reflectors : Durability modeling method and lifetime extrapolation

Durability modeling method and lifetime extrapolation :

Representation of failure modes and associated degradation mechanisms for reflectors

M. Köhl, "Performance, durability and sustainability of advanced windows and solar components for building envelopes," Final Report Task 27-B, Fraunhofer Institute for Solar Energy Systems for PTJ Jülich, 2007.

Example of solar reflectors :

Durability modeling method with one acceleration stress factor:

a : Acceleration stress factor $t_{\rm s}$: time on site t_{test} : time in test E_a : Activation energy in J·mol⁻¹ R : perfect gas constant in J·mol⁻¹·K⁻¹ γ : frequency factor in h⁻¹ n : Peck coefficient HR : relative humidity T : temperature in K β : Eyring coefficient p : Schwarschild's coefficient Irr : Irradiation, in W·m⁻²

Durability modeling method of solar mirrors with one acceleration stress factor:

Performance criteria of mirror degradation => loss of functional property => $\Delta \rho s$ = - 5 %

One acceleration stress factor Temperature dependence :

temps(h)

Temperature (°C)

1 0 0 0

10 000

70°C 85°C

• 100°C

100

10

133

94

С

D

Durability modeling method of solar mirrors with one acceleration stress factor:

Correlation between outdoor and indoor aging thanks to multi-sites exposure on different scale and different climatic chambers

Modeling approach to take into account the variation of temperature on sites :

- 1. Site selection
- 2. Meteorological data from Meteonorm[®] software
- 3. Activation Energy calculation from accelerated tests
- 4. Modeling using Scilab
- 5. T_{eff} calculation and comparison with T_{mean}
- 6. Effect of taking account T_{eff} instead of T_{mean} on the Acceleration factor

Delingha

Temperature (°C)

Kuraymat

0 20

Temperature (°C)

Sundrop Farms

Temperature (°C)

-20

-20 0 20

-20 0 20 40

Durability modeling method of solar mirrors with a thermal acceleration stress factor:

E. Le Baron CEA

[1] M. Tencer, J. S. Moss and T. Zapach. IEEE Transactions on Components and Packaging Technologies, 2004, 27, 602-607.

Durability modeling method of solar mirrors with a thermal acceleration stress factor:

Durability modeling method of solar mirrors with a thermal acceleration stress factor:

Conclusion of modeling approach to take into account the variation of temperature on sites :

- 9 Sites selection
- Meteorological data from Meteonorm[®] software
- 3. Activation Energy calculation
- Modeling Arrhenius law using Scilab
- T_{eff} calculation and comparison with T_{mean} 5.
- $T_{eff} = \frac{-u}{Rln\left[\frac{1}{t}\int_{0}^{t}exp\left(\frac{-E_{a}}{R.T}\right)dt\right]}$ Calculation of time of accelerated test equivalent to 30 years on site 6.

Equivalent testing time to simulate 30 years during accelerated test is :

- dependent on site temperature
- dependent on activation energy
- longer using T_{eff} than $T_{mean} \rightarrow$ importance of T_{eff} calculation

Durability modeling method of solar mirrors with one acceleration stress factor:

Acceleration stress factor : $A = \underbrace{t_s}_{t_{test}}$? Lifetime = unknown

Humidity
Peck
Eyring

$$t = (HR) exp\left(\frac{E_a}{R,T}\right) \quad a_{RH} = \left(\frac{RH_s}{RH_t}\right)^n \cdot exp\left(\frac{E_a}{R}\left[\frac{1}{T_s} - \frac{1}{T_t}\right]\right)$$

$$t = C. exp\left(\frac{E_a}{R,T} + \frac{\beta}{HR}\right) \quad a_{T,RH} = exp\left(\frac{E_a}{R}\left[\frac{1}{T_s} - \frac{1}{T_t}\right] + \beta\left[\frac{1}{RH_s} - \frac{1}{RH_t}\right]\right)$$

A : Acceleration stress factor t_s : time on site t_{test} : time in test E_a : Activation energy in J·mol⁻¹ R : perfect gas constant in J·mol⁻¹·K⁻¹ γ : frequency factor in h⁻¹ n : Peck coefficient HR : relative humidity T : temperature in K β : Eyring coefficient p : Schwarschild's coefficient

C. Avenel, O. Raccurt, J.-L. Gardette, and S. Therias, "Review of accelerated ageing test modelling and its application to solar mirrors," Solar Energy Materials and Solar Cells, vol. 186, pp. 29 – 41, 2018.

Durability modeling method of solar mirrors with a humidity acceleration stress factor:

= n ln(RH) +

 E_{a} (RH)

+ ln(C)

• Determination of the apparent activation energy Ea for **Damp Heat tests**

ln(t

ln(t

- Peck coefficient n
- Eyring coefficient β

Graphical method :

	Mirror	Mean
Ea	С	108
kJ/mol	D	162
2	С	-5.4
n	D	-10.9
β	С	544
%	D	926

E. Le Baron CEA

Durability modeling method of solar mirrors with a humidity acceleration stress factor:

Durability modeling method of solar mirrors with a humidity acceleration stress factor:

Accelerator stress factor and consistent ttest for RHs ≥ 50% (Shams, Sundrop Farms, Kuraymat, Atacama, Andasol)

Cez

Models diverge for RHs < 50%

Durability modeling method of solar mirrors with a humidity acceleration stress factor:

Conclusion of modeling approach to take into account the variation of humidity on sites :

- 1. 9 Sites selection
- 2. Meteorological data from Meteonorm[®] software
- 3. Activation Energy calculation
- 4. Modeling Peck /Eyring law using Scilab
- 5. RH_{mean}%
- 6. Calculation of time of accelerated test equivalent to 30 years on site

Equivalent testing time to simulate 30 years during accelerated test is :

- dependent on site humidity
- dependent on activation energy

Durability modeling method of solar mirrors/absorbers/glass of local solar spectra on sites :

Modeling approach to take into account the variation of local solar spectra on sites :

n°1

ASTM G173-03 DC solar spectrum is a reliable reference for performance evaluation of CSP components

- Mismatches with the ASTM solar spectrum are mainly due to specific location with high s Precipitable Water : PW (a dryer atmosphere)
- Polymeric mirrors can have difference between local spectra to ASTM up to 1%

E. Le Baron CEA "Long Time Series Solar Spectra Used for Solar Field Performance Evaluation", A.Grosjean, E. Le Baron, A.C Pescheux et A.Disdier, (2019), in 'Solar PACES 2019'

n°4 n°5 n°6 n°7 n°8 n°9 n°10

n°2 n°3

Example of absorbers : Durability modeling method and lifetime extrapolation

E. Le Baron CEA

Durability modeling method of solar absorbers with a thermal acceleration stress factor:

Samples	T _{stab} (°C)*	T _{test} = cste (°C)			
A	430		450	480	
В	300	350	400	450	
С	300	350	400	450	

Degradation mechanism = oxidation of the metallic part of CERMET layer

E. Le Baron CEA

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Lifetime extrapolation of reflectors (erosion and corrosion)

Florian Wiesinger, DLR

Knowledge for Tomorrow

Contents

Erosion Parameter Study

Erosion Lifetime Modeling

Corrosion Lifetime Modeling

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/

Erosion Testing- Testloop C

Sand erosion test to simulate sand storms

Item table construction

control box for electronics

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/ Erosion Testing – Testloop C

Open loop wind tunnel in suction mode with high variability of input parameters allowed for a comprehensive study of erosion determining influences coming from: **particle velocity, impact angle, erodent material**

SFERA III: On-site training for industry, Le Bourget-du-Lag June 8th 10th 2022 Eroshtp/sfera3 sole Suting - Iestioop C -

Velocity Open loop wind tunnel in suction mode with high variability of input parameters allowed for a comprehensive study of erosion determining influences coming from: particle velocity, impact angle, erodent material

c) MIL-dust: <150μm d) DOR-sand: 15-300μm

SFERA III: On-site training for industry, Le Bourget-du-Lacroune 8th 10th 2022 Eroshtp/sfera3. Consuting - Testioop C -

- Theory differentiate brittle and ductile materials.
- Fit because $E_g \approx \vec{u}^2 = (u \cdot \sin \beta)^2$

DOR-sand: 15-300µm

Arabnejad 2015

SFERA III: On-site training for industry, Le Bourget-du-Lagrune 8th 10th 2022 Eroshtp/sfera3. Consuting - Testloop C -

MIL-dust: <150μm DOR-sand: 15-300μm

- Mechanical wear exhibits minimum threshold; below negligible.
- Relation between impact energy (E_g) and wear can be described as power law.
- For DOR-sand also maximum threshold observed →All particles do maximum damage.

Slide

Eroshop/sfera3. Consulting for industry, Le Bourget-du-Large- lestion 2022 Consulting for industry and the set of the set

MIL-dust: <150μm DOR-sand: 15-300μm MIL-sand: 150-850μm

- MIL-sand largest particles and smallest Δp.
 → Threshold effects and particle number per impact mass.
- Same investigation with higher resolution...

Erosho Stras Construction of the second structure and the second structure and the second sec

Sieve MIL-sand in four size fractions: see subscript range

→ Aeolian erosion at typical field conditions becomes inefficient for quartz particles smaller than $50\mu m$.

- → Material from Zagora more aggressive than Missour material.
- Particle characteristics (shape, mineralogy)

All particle types sieved to same size range.

Eroshop/Sfera3. Constitution for industry, Le Bourget-du-Lagrune 8th 10th 2022 Eroshop C -

- → Quartz highest erosion potential, due to its hardness. (quartz 7, gypsum 2, calcite 3)
- → Gypsum and calcite contents in natural material not responsible for erosion effects under typical conditions.

All particle types sieved to same size range.

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 http://sfera3.sollab.eu/ Erosion Testing- Standartization

- How to quantify erosion ?
- Reflectance loss ρ not meaningful, since one large defect can cause similar Δρ as a lot of small defects while the consequences might be completely different.
- Instead of ρ use image analysis to obtain defect size density distribution DSDD.

Erosho Standartization - Standartization - DSDD

Instead of p use image analysis to obtain *defect size density distribution DSDD*.

SFERA III: On-site training for industry, Le Bourget-du-La Sune 8th - 10th 2022 Erosho / Strain - Standartization - DSDD

Use two different magnifications of microscope and combine them to account for whole range of defect sizes. Best (100 x 100 with high magnification but kills RAM)

SFERA III: On-site training for industry, Le Bourget-du-La Sune 8th - 10th P022 Eroshop/Stra3. Solo Suting - Standartization -

- DSDD
- Rank outdoor sites regarding the observed DSDD in three different erosion classes.
- Find adequate parameters in the testloop C to simulate the same DSDD.

Erosho/steam and stry, Le Bourget-du-La Sune 8th - 10th 2022 Erosho/stera3 so Sting - Standartization -

Slide

Lifetime assessment:

DSDD

- Outdoor exposure for X years
- Determine DSDD and find necessary particle mass in artificial aging test to simulate X years.
- Multiply the determined particle mass in order to achieve simulation for e.g. 10 years.
- Class 1 for 10 years, use 0.06g/cm² → Δρ around 2.5% (1 year Δρ ca 0.25%) linear behavior.

SFERA III: On-site training for industry, Le Bourget-du-La June 8th – 10th 2022 Eroshop/Sfera3. Societing – Standartization – DSDD 10⁶

Lifetime assessment:

• Class 3 for 10 years $\Delta \rho$ around 38% (1 year $\Delta \rho$ ca 5%) NON-LINEAR behavior.

seferm UI: On-site training for industry, Le Bourget-du-Les, Bourget-du-Loss, June 8th - 10th 2022 Corrosion Testing

- Extensive outdoor exposure campaign on 13 sites: Almeria, Tabernas, Gran Canaria, Abu Dhabi, Oujda, Missour, Erfoud, Zagora, Tan Tan, Maan, Tatauine, Adrar, Cairo
- Variety of site conditions, from urban over coastal to desert
- On-site measurements of parameters (temperature, wind, • irradiation, humidity, particles, etc.)

Slide

Slide http://sfera3.sollab.eu/

speran Ul: On site training for industry. Le Bourget-du-Las, June 8th – 10th 2022 http://sfera3.sollab.eu/ Corrosion Testing

- In order to assess site corrosivity: ISO 9223:2012 standard:
 - 10x10 cm² coupons of steel, copper, zinc and aluminum exposed for 1 year.
 - Afterwards collect, clean and determine weight loss.
 - Classify in 6 categories (C1,...,C5,CX)

Reflector and standard metal samples in outdoor exposure rack.

Buendia 2021

Slide

http://sfera3.sollab.eu/

Slide

Slide http://stera3.sollab.eu/

sperant UI: On-site training for industry. Le Bourget-du-Jas, June 8th – 10th 2022 http://sfera3.sollab.eu/ Corrosion Testing

Site	Averag	ge mass los	Average corrosivity		
	Zinc	nc Cooper Aluminum St		Steel	class
Almeria	8.78	43.4	1.19	346	C4
Tabernas	3.79	15.3	0.45	132	C3
Odeillo	3.30	5.61	0.09	8.59	C2
Missour	5.05	7.62	0.14	43.4	C2
Erfoud	4.01	19.8	0.30	65.7	C2
Zagora	2.44	5.15	0.03	28.3	C2
Ouarzazate	3.75	7.15	0.47	19.4	C2
Temara	398	190	4.83	7769	CX
Atacama	5.41	20.5	0.64	210	C3
Desert					
Chajnantor	3.50	6.38	0.27	103	C2

Average mass loss per square meter after 1 year outdoor exposure.

In addition to corrosion characterization also reflector exposure

Buendia 2021

sperce du 2022 Slide Straining for industry Le Bourget-du 2022, June 8th – 10th 2022 Slide Straining for industry Le Bourget-du 2022, June 8th – 10th 2022 Slide

ρ

Analysis via total reflectance:

$$= \rho_{NC} \cdot \frac{A_{NC}}{A_{Total}} + \rho_C \cdot \frac{A_C}{A_{Total}}$$

$$\Rightarrow \qquad \rho = \rho_{NC} \cdot \left(1 - \frac{A_C}{A_{Total}}\right)$$

When $\rho_{\rm C}$ is considered to be negligible \rightarrow

Buendia 2021

Slide http://sfera3.sollab.eu/

Non corroded area shows linear degradation of reflectance, due to erosion, UV-degradation or soiling deposition

Correlation derived from CASS test. Taking into account the acceleration factor a_f

Buendia 2021

sreeter UI: On-site training for industry. Le Bourget-du-Jaz, June 8th – 10th 2022 slide http://sfera3.sollab.eu/ Corrosion Testing - modeling

Further correlation approaches

To find reasonable model: CASS test

Slide http://sfera3.sollab.eu/

Acceleration factor a_f derived from comparison of CASS test with outdoor results.

Buendia 2021

sreet-du-las, June 8th – 10th 2022 slide http://sfera3.sollab.eu/ Corrosion Testing - modeling

Find testing time in CASS to reproduce same corrosion area as after 3 years outdoor.

Slide http://stera3.sollab.eu/

Table 4

Ratio of area corroded by corrosion spots $\left(\frac{A_C}{A_{Total}}\right)$ after approximately 3 years of outdoor exposure, depending on the material and site.

Material	Site (corrosivity class)							
	Almería (C4)	Tabernas (C3)	Atacama Desert (C3)					
	$A_C/A_{Total}(-)$	$A_C/A_{Total}(-)$	$A_C/A_{Total}(-)$					
RLA1	0.000001	0.000000	0.000000					
RLA1R	0.000007	0.000002	0.000002					
RLA3	0.000037	0.000004	0.000001					
RLA4R	0.000210	0.000021	0.000055					

spectra UI: on site training for industry. Le Bourget-du-Jac, June 8th – 10th 2022 Slide http://sfera3.sollab.eu/

Acceleration factor a_f derived from comparison of CASS test with outdoor results.

Slide http://sfera3.sollab.eu/

Material	Site (corrosivity class)									
	Almería (C4) $t_{chamber}$ (h) a_f (-)		Tabernas (C	3)	Atacama Desert (C3)					
			$t_{chamber}$ (h) a_f (–)		t _{chamber} (h)	$a_f(-)$				
RLA1	234 106		118	204	131	200				
RLA1 R	230	108	130	185	144	182 79				
RLA3	935	27	493	48	331					
RLA4R	280	88	157	153	201	131				

Buendia 2021

t_{chamber} (h) t_{chamber} (h) $a_{f}(-)$ $a_{f}(-)$ t_{chamber} (h) $a_{f}(-)$ RLA1 RLA1R RLA3 RLA4R

Using the acceleration factor a_f the lifetime of each reflector type and every site can be calculated.

Buendia 2021

Correste training for industry. Le Bourget-du-Las, June 8th - 10th 2022 Correste foi industry, Le Bourget-du-Las, June 8th - 10th 2022 economic analysis

Slide http://stera3.sollab.eu/

• LCOM of two reflectors RLA1R RLA4R.

- RLA4R is 3% cheaper for initial cost.
- At C4 sites only advisable if lifetime <15 years.

SFERA-III

Solar Facilities for the European Research Area

	Friday, June 10, 20	22	-	and the second
	9:15 - 10:15	Coupling stress factors and conclusion on lifetime prediction and durability studies	CEA	60 min
	10:15 - 11:15	CEA Optical and mechanical characterization tools	CEA	60 min
1	11:15 - 11:30	- Coffee break -		15 min
	11:30 –12:15	DLR Optical characterization tools	DLR	45 min
	12:15 – 13:45	- Lunch break at Restaurant "SUPERNOVA"	A	90 min
	13:45 – 15:45	Experience sharing industrial focus and Feedback	All	120 min
8	15:45	End of meeting	+ 72-	-
-				

cea

Coupling stress factors and conclusion on lifetime prediction and durability studies

E. Le Baron CEA

Coupling several acceleration stress factors:

- 1. Temperature
- 2. Irradiation, UV
- 3. Relative Humidity

On site all of these stresses are applied at the same time

→ We therefore need a coupling accelerated law

Modeling method of solar mirrors by coupling several acceleration stress factors:

Acceleration stress factor: $A = \underbrace{t_s}_{t_{est}}$? No synergy between stress factors ^[1] $A = a_T \cdot a_{RH} \cdot a_I$ model developed by Jorgensen ^[2] $\Delta \rho = C \cdot I_{UV} \cdot T^{-n} \cdot e^{-\frac{Ea}{R \cdot T}} e^{RH(\beta + \frac{B}{T})}$ based on Eyring's law

model proposed by Lee et al [3]

E. Le Baron CEA

$$\Delta \rho = C \cdot I_{UV} \cdot e^{-\frac{Ea}{R \cdot T}} e^{B \cdot RH} \cdot ts$$

[1] M. Kohl, B. Carlsson, G. Jorgensen, A.W. Czanderna, Performance and Durability Assessment, Optical Ma, 2004

[2] G.J. Jorgensen, and al., "Durability studies of solar reflector materials exposed to environmental stresses", Knowl. Creat. Diffus. Util. (1997)

[3] J. Lee, "Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing", (2011)

A : Acceleration stress factor $t_{\rm s}$: time on site *t_{test}*: time in test E_a : Activation energy in J·mol⁻¹ R : perfect gas constant in J·mol⁻¹·K⁻¹ γ : frequency factor in h⁻¹ n : Peck coefficient **RH** : relative humidity T: temperature in K β : Eyring coefficient p: Schwarschild's coefficient Iuv : Irradiation, in $W \cdot m^{-2}$

B, C : constant

Modeling method of solar mirrors by coupling several acceleration stress factors:

Three hypotheses from theoretical lifetime models ^[1]:

$$A = a_T \cdot a_{RH} \cdot a_I -$$

 <u>Dose assumption</u>: There is a proportional response between the duration of a stress and the degradation mechanisms observed

Coupling hypothesis: Accelerating factors multiply each other without synergy

3. <u>Initialization hypothesis</u>: It states that if a sample undergoes several accelerated tests, the order of the application of these tests is not important.

Solar Facilities for the European Rese

→ The three combined stress factors, temperature, relative humidity and irradiation, we conducted accelerated aging tests in three different chambers → Now UV5X commercial unique equipment could produce the elevated level of these three stresses factors

[1] M. Kohl, B. Carlsson, G. Jorgensen, A.W. Czanderna, Performance and Durability Assessment, Optical Ma, 2004

Example of Coupling several acceleration stress factors of reflectors :

3 successive conditions:

Thermal + UV + Humidity tests → 3 conditions of unitary tests + 3 coupling + 3 initialization

Accelerated aging plan :

Week n°	n°1	n°2	n°3	n°4	n°5	n°6	n°7	n°8	n°9	n°10	n°11	n°12
Short Cycle	1st t	urnover = 3 w	veeks 2nd t		d turnover = 3 weeks		3th turnover = 3 weeks		veeks	4th turnover = 3 weeks		reeks
Start T+HR	T+HR	T+Irr	Т	T+HR	T+Irr	Т	T+HR	T+Irr	Т	T+HR	T+Irr	Т
Start T	Т	T+HR	T+Irr	Т	T+HR	T+Irr	Т	T+HR	T+Irr	Т	T+HR	T+lrr
Start T+Irr	T+Irr	Т	T+HR	T+lrr	Т	T+HR	T+lrr	Т	T+HR	T+lrr	Т	T+HR
Average Cycle	1st turnover = 6 weeks						2nd turnover = 6 weeks					
Start T+HR	T+HR T+		Hrr T		T+HR		T+Irr		Т			
Start T	T T+		HR T+Irr		-	Т		HR	T+Irr			
Start T+Irr	T+Irr		ſ	T+HR T+Irr		Т		T+HR				
Long Cycle		1st turnover = 12 weeks										
Start T+HR	T+HR			T+Irr			Т					
Start T	Т			T+HR			T+Irr					
Start T+Irr	T+Irr			T			T+HR					

- Short Cycle of one week (168h)
- Average Cycle of two weeks (336h)
- Long Cycle of four weeks (672h)

Total of 12 weeks (2016 h):

- 4 weeks at a temperature of 95 °C
- 4 weeks at a relative humidity of 85% and a temperature of 95°C
- 4 weeks at 200W/m² UV irradiation and a mirror temperature of 95°C

E. Le Baron CEA

Accelerated aging tests and characterizations of solar mirrors: Comparison of combinations of stress factors on degradation", Grosjean A., Le Baron E., Disdier A., Solar Energy Materials and Solar Cells 220 (2021)
Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

E. Le Baron CEA

• Evolution of specular reflectance ps and hemispherical reflectance over time t to compare different cycle durations for the same first aging test

Coupling effect:

- Short Cycle of one week (168h)
- Average Cycle of two weeks (336h)
- Long Cycle of four weeks (672h)
- 4 comparisons show a high difference
- 8 comparisons show no difference

- 3 comparisons show a high difference
- 9 comparisons show no difference
- Samples #1 : minimal specular/hemispherical reflectance loss of 1%
- Samples #3 : significant losses of 12%

Accelerated aging tests and characterizations of solar mirrors: Comparison of combinations of stress factors on degradation", Grosjean A., Le Baron E., Disdier A., Solar Energy Materials and Solar Cells 220 (2021).

Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

 Evolution of specular reflectance ps and hemispherical reflectance over time t to compare different first aging tests for the same cycle duration

Initialization effect: the effect of the 1st stress

- 5 comparisons show high difference
- 1 comparison shows an average difference
- 6 comparisons show no difference
- 7 comparisons show high difference
- 1 comparison shows an average difference
- 4 comparisons show no difference
- Samples #1 : minimal specular/hemispherical reflectance loss of 1%
- Samples #3 : significant losses of 16%
- Samples #2 #3 #4 : T + HR >T >T + Irr test

Accelerated aging tests and characterizations of solar mirrors: Comparison of combinations of stress factors on degradation", Grosjean A., Le Baron E., Disdier A., Solar Energy Materials and Solar Cells 220 (2021)

Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

• Evolution of spectral hemispherical reflectance over time t at t=0h and after 2016 h of tests :

→ main difference is between 250-1000 nm

In the NIR spectral area (up to 2 µm), we observe that aged mirrors (green and blue curve) are more reflective than an intact mirror (black curve)

Accelerated aging tests and characterizations of solar mirrors: Comparison of combinations of stress factors on degradation", Grosjean A., Le Baron E., Disdier A., Solar Energy Materials and Solar Cells 220 (2021) 110851. <u>https://doi.org/10.1016/j.solmat.2020.110851</u>

E. Le Baron CEA

Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

Evolution of specular reflectance os over time t

- Weibull curves with 12 points and -8% < $\Delta \rho$ < -15% with maximal absolute deviation of 0.4%
- Reflectance losses less important for mirrors starting with a temperature and irradiation test (T+Irr)
- → "protective" effect of UV or polymerization of paints, rendered the paint layers non-permeable to water ?
- → effect of solarization : improve the transmittance of solar glass due to UV radiation

Accelerated aging tests and characterizations of solar mirrors: Comparison of combinations of stress factors on degradation", Grosjean A., Le Baron E., Disdier A., Solar Energy Materials and Solar Cells 220 (2021)

Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

• Evolution of Colorimetric degradation (ΔE) over time t to compare different first aging tests for the same cycle duration

Initialization effect: the effect of the 1st stress

Samples #1 :

- 9 comparisons show high difference
- 3 comparisons show no difference

- Samples #1 : significant discoloration of 13% T + HR >T >T + Irr
- Samples #2, #3, # 4 : minimal discoloration of 3% and T + Irr >T >T + HR

Conclusion is the opposite of the one formulated for reflectance losses

Example of Coupling several acceleration stress factors of reflectors :

Thermal + UV + Humidity tests

Conclusion :

We have studied the coupling of temperature, humidity and UV irradiation stresses on solar mirrors during 12 weeks (2016 h) of accelerated ageing tests. We have chosen 4 different manufacturers of silvered glass mirrors to provide a total of 120 samples.

The hypotheses used by default in multi-factor aging tests were shown to be fallible :

- 1. The first moment of the mirror's life is decisive for the rest of its life
- 2. Each sample was subjected to the same duration of each stress (4 weeks in each climate chamber), the first stress and the turnover (1, 2 or 3 weeks) were different
- 3. We have shown that this difference is not a coincidence because the loss of reflectance is not negligible
- 4. One of the most surprising result of aging tests is the lifespan longer of mirrors (Samples #2 #3 #4) that underwent firstly UV irradiation stress : hypothesis of "protective" effect of UV or curing the paints

→ It is necessary to propose a durability model taking into account the synergy and the order of application of the stresses.
 → impact of three simultaneous stress factors in an appropriate climate Thermal + UV + Humidity tests chamber ?
 it is not possible to substitute the combination of three stress factors by several climate chambers with one or two stresses

Conclusion on lifetime prediction and durability studies :

On models :

- One stress factor : Temperature of tests used are suitable to determine the thermal resistance of components and calculation of activation energy. We can calculate the maximum temperature for lifetime operation by Arrhenius law
- Using T_{eff} instead of T_{mean} is necessary \rightarrow importance of T_{eff} calculation for solar mirrors
- Model for one acceleration stress factors are validated but realistic need REX from kinetic results on CSP plants
- Difficulty to substitute the combination of several stress factors by several climate chambers with one or two stresses
- Need a model taking into account the synergy and the order of the coupling of several acceleration stress factors of tests

On annual performance of solar spectra :

- A slight difference between local spectra with Aeronet® software and the reference spectrum (AM 1.5) for CSP sites On lifetime prediction :
- Need microclimat results (soiling, erosion, wind levels ...) + coupling laws + measurement results on CSP plants during
 operation (mechanical and geometrical stress, cleaning frequency...)

Role of paintings :

• The paint on the back side of the mirrors and coatings on glasses and absorbers play a key role in the durability of these components (binder photo degradation, pigments loss and blistering phenomenon)

"Prediction is very difficult, especially if it's about the future!" N.Bohr

E. Le Baron CEA

Optical and Mechanical Characterization Tools

R. Albert CEA

Short term training Meeting STT2 : Durability of reflectors

Solar Facilities for the European Research Area

Solar Facilities for the European Research Area

Goal :

- determine the real shape of a curved mirror
- Intercept factor evaluation

Either :

- points coordinates are measured
- Surface is built thanks to a CAO software
- CAO surface is imported into a raytracing model.
- The intercept factor is determined

Or :

- Slope (or slope errors) are measured
- Knowing thanks to the model the intercept factor decrease with the slope errors, you can assess directly the intercept factor

Performance depends on the slope errors

Example : PTC, C_geo = 19, rim angle : 110°, sun : on-axis

Solar Facilities for the European Research Area

Solar Facilities for the European Research

Mechanical method : Touch probes : 3D measuring machine

Automatic measurements Dimensions : up to 10 m Accuracy < 0.1 mm :

Error on the position of the probe (optical sensors on 3 axis)Error of the probe

Touch probe

Mechanical method : Touch probes : Portable Measuring Arms

	VOLUME DE MESURE (M)						
	1,2 M	1,8 M	2,4 M	2,7 M	3 M	3,7 M	
lge		0,024		0,029		0,064	
ime	0,016	0,019	0,024		0,042	0,060	
sion		0,036	0,043		0,074	0,104	

MOLUME DE MEQUIDE (---)

REPETABILITE (mm)

Very good accuracy (<0.1 mm) Manual measurements Size < 4 m

Solar Facilities for the European Research Area

Laser technologies : Tachometer (or total station)

Laser emmitter + receiver : distance measurement (Dopler effect) : accuracy : 1 mm Direction : optical sensors on both axis : accuracy : 0.1 mrad (1 mm at 10 m) Scan the environnement moving on the 2 axis =>high spatial resolution Not adapted to measure mirror :

- dedicated white powder to apply or

Laser technologies : Tachometer (or total station) + laser tracker + retro-reflective sphere

The tachometer tracks its target (retro-reflective sphere)

Point measurement one by one and by hand, moving the retro-reflective sphere on the surface to measure

Laser technologies : 2D scanner

Measurement of the profile thanks to triangulation (incident angle needed) Not adapted to measure mirrors :

- dedicated white powder to apply

Laser technologies : tachometer tracks the portable 2D scanner

AT960 LR + T-SCAN 5 (LEICA) :

- Spatial resolution : 0.07 x 0.07 mm to 2 x 2 mm
- Accuracy : $80 \mu m + 3 \mu m/m$

Laser technologies : tachometer tracks the portable 2D scanner

Solar Facilities for the European Research Area

Touch probes associated with laser technology

Portable Measuring Arms + scan 3D

Portable touch probe + tachometer

Solar Facilities for the European Resea

Photogrammetry

Thanks to several pictures of the same object, the 3D is obtained 4 corners location are deduced without any pattern Several pictures with one camera or several cameras Circles are seen deformed according to the location of the camera In the software, you indicate the 4 corners, the center of each black circles is then deduced (Camera location is deduced)

Accuracy depends on the quality of the pictures, spatial resolution limited

Solar Facilities for the European Research Area

VSHOT (Video Scanning Hartmann Optical Test)

Slope measurement thanks to the location of the reflected spot on the target

SSCAN (Solar Concentrator Characterization At Night) Star seen trough the heliostat, from the CCD camera Star Heliostat

CCD

The heliostat tracks a star and aims at a CCD camera at the top of the tower

From the CCD camera, the star is seen at several location onto the heliostat

Tower

- Need to sweep the heliostat (or the CCD camera) so that all the reflected spot goes to the camera
- Slope errors are deduced comparing where the star is seen with where it should be seen (optical model)

Flux map

1.2 **ARM (Absorber Reflection Method)** 1 0.8 0.6 0.4 0.2 6 et a 1.5 -1.5 -0.5 -1 0.5 0 1 1.2 1 🍦 0.8 Camera is moving along the aperture According to where the tube is seen, slope error is deduced 0.6 0.4 0.2

-1.5

-1

-0.5

0

0.5

1.5

1

Solar Facilities for the European Research Area

Deflectometry

Fast Accuracy : 0.1 mrad High spatial resolution No commercial software

Solar Facilities for the European Research Area

« Direct » DeflectometryUse of the contrast (black to white according to a sinus)Size of the fringe are moving

« projected » Deflectometry

Solar Facilities for the European Research Area

Deflectometry : SOFAST (Sandia Optical Fringe Analysis Slope Tool)

« Direct » Deflectometry LCD screen : pattern can vary

Coloured Pattern Deflectommetry (CPD)

« direct » Deflectometry

CCD Camera + Target

Slope errors are deduced indirectly comparing the measured and the simulated flux map Need for a flux calibration

« grey » image from CCD camera

Références

M. Shortis et G. Burgess, «Photogrammetric monitoring of the construction of a solar energy dish concentrator,» Photogrammetric Engineering and Remote Sensing, vol. 78, n° %15, pp. 519-527, 2012.

M. RÃger, C. Prahl et S. Ulmer, «Heliostat shape and orientation by edge detection,» Journal of Solar Energy Engineering, Transactions of the ASME, vol. 132, n° %12, pp. 210021-210027, 2010.

J. Burke, W. Li, A. Heimsath, C. von Kopylow et R. Bergmann, «Qualifying parabolic mirrors with deflectometry,» Journal of the European Optical Society, vol. 8, pp. 13014.1-13014.6, 2013.

J. Xiao, X. Wei, Z. Lu, W. Yu et H. Wu, «A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications,» Renewable and Sustainable Energy Reviews, vol. 16, n° %15, pp. 2539-2544, 2012.

C. Andraka, S. Sadlon, B. Myer, K. Trapeznikov et C. Liebner, «Rapid reflective facet characterization using fringe reflection techniques,» 2009.

J. Stynes et B. Ihas, «Absorber alignment measurement tool for solar parabolic trough collectors,» 2012.

C. Prahl, B. Stanicki, C. Hilgert, S. Ulmer et M. Röger, «Airborne shape measurement of parabolic trough collector fields,» Solar Energy, vol. 91, pp. 68-78, 2013.

F. Arqueros, A. Jiménez et A. Valverde, «A novel procedure for the optical characterization of solar concentrators,» Solar Energy, vol. 75, n° %12, pp. 135-142, 2003.

W. Tim, M. Ken et G. Randy, «Video scanning hartmann optical testing of state-of-the-art parabolic trough concentrators,» 2007.

HEXAGON, http://www.hexagonmi.com/fr-FR/products/coordinate-measuring-machines/shop-floor-cmms.

FARO, https://www.faro.com/fr-fr/produits/.

KEYENCE, https://www.keyence.fr/products/measure/laser-1d/lk-g3000/index.jsp.

SFERA III: On site Training for Indusry

Le Bourget-du-Lac, June, 8th – 10th 2022

Optical characterization tools

Florian Wiesinger, DLR

Knowledge for Tomorrow

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Materials – reflectance

properties

DLR CRAC

Slide

Materials – reflectance properties

	ρ(SW; 8º;h)	ρ(660nm; 8º;h)	ρ(660nm; 15º;12.5mrad)	ρ(SW; 15º;12.5mrad)
Glass mirror 0.95 mm	95.7	96.9	96.3	95.1
Glass mirror 4 mm	94.1	95.7	95.6	94.0
Polymer film	93.9	98.5	95.5	91.0
Aluminum (PVD)	90.0	90.6	85.1	84.5
Aluminum	87.2	84.2	79.6	82.4

Materials - scattering

0.95mm Glass

Polymer film

.

Aluminum (PVD)

Materials - scattering

Materials - scattering

Slide

Slide

SFERA III: On-site training for industry , Le Bourget-du-Lac, June $8^{th} - 10^{th}$ 2022

Materials – reflectance properties

Fresnel formulae

Parallel polarized light

$$\rho_p = \left| \frac{n_2^2 \cos(\theta) - n_1 \sqrt{n_2^2 - n_1^2 \sin^2(\theta)}}{n_2^2 \cos(\theta) + n_1 \sqrt{n_2^2 - n_1^2 \sin^2(\theta)}} \right|^2$$

Perpendicular polarized light

$$\rho_{s} = \left| \frac{n_{1} \cos(\theta) - \sqrt{n_{2}^{2} - n_{1}^{2} \sin^{2}(\theta)}}{n_{1} \cos(\theta) + \sqrt{n_{2}^{2} - n_{1}^{2} \sin^{2}(\theta)}} \right|^{2}$$

$$\rho_{non-polarized} = \frac{1}{2} \left(\rho_{p} + \rho_{s} \right)$$

Refractive index for metals is complex.

Perkin Elmer Lambda 1050 spectrophotometer

- Top class instrument
- Measures hemispherical reflectance, transmittance or absorptance
- Wavelength of light source: λ = 250 2500 nm
- Incidence angle $\theta = 8^{\circ}$
- High repeatability (<0.2%)

Spectrometer with 150mm Integrating Sphere

Disadvantages:

- Max. measurement spot 9x17mm²
- No specular measurements

D&S (various)

Konica Minolta

SOC 410 Solar

pFlex

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022 Materials.collab.eu/ reflectance

D&S (various)

Monochromatic specular reflectance at selected acceptance angles

Slide

- Incidence angle $\theta = 15^{\circ}$
- Beam spot diameter 10mm
- multi wavelength model with 460, 550, 650, 720 nm
- (Half) acceptance angles φ 2.3, 3.5, 7.5, 12.5 and 23.0 mrad
- Curved mirrors

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022

Materials-- reflectance

nronartias

Condor – Aragon Photonics

- 6 different beam sources and 6 detectors
- Monochromatic specular and solarweighted specular (from 6 wavelengths)
- Incidence angle $\theta = 12^{\circ}$
- 6 spots are aligned (mirror thickness & curvature) and cover 230mm² area
- Wavelengths: 435, 525, 650, 780, 940 and 1050nm
- (Half) acceptance angles ϕ 145 mrad

SFERA III: On-site training for industry , Le Bourget-du-Lac, June $8^{th} - 10^{th}$ 2022

Materials – reflectance

properties

SOC 410 Solar – Surface Optics

- Integrating sphere where specular port can be opened →hemispherical and diffuse, specular calculated
- Incidence angle θ =20°
- Beam spot diameter 6.35mm
- Wavelength at seven bands between 300 and 2500nm
- (Half) acceptance angles ϕ 52.4mrad

SFERA III: On-site training for industry , Le Bourget-du-Lac, June $8^{th}-10^{th}\ 2022$

Materials – reflectance

properties

CM700d/600d – Konica Minolta

 Integrating sphere where specular port can be opened →hemispherical and diffuse

Slide

- Incidence angle $\theta = 8^{\circ}$
- Beam spot diameter depending on model between 3 and 8mm
- Wavelength in 10nm steps between 400 and 700nm

SFERA III: On-site training for industry , Le Bourget-du-Lac, June 8th – 10th 2022

Materials – reflectance

pFlex – Frauenhofer ISE

3 light sources with different λ and 1 detector

Slide

- Incidence angle $\theta = 8^{\circ}$
- Beam spot diameter 10mm
- Wavelengths 470, 525 and 625nm
- (Half) acceptance angles ϕ 67mrad

- Measurement of complete BRDF
- Allows to compute reflectance as function of φ
- Variable incidence angle $\theta = 6^{\circ} 60^{\circ}$
- White light or $\lambda = 450, 500, 550, 650, 700, 850, 940 \text{ nm}$

Meyen 2014

- Measurement of complete BRDF
- Allows to compute reflectance as function of $\boldsymbol{\phi}$
- Variable incidence angle $\theta = 6^{\circ} 60^{\circ}$
- White light or $\lambda = 450, 500, 550, 650, 700, 850, 940 \text{ nm}$

Meyen 2014

- Measurement of complete BRDF
- Allows to compute reflectance as function of $\boldsymbol{\phi}$
- Variable incidence angle $\theta = 6^{\circ} 60^{\circ}$
- White light or $\lambda = 450, 500, 550, 650, 700, 850, 940$ nm

D&S measurements at slightly different wavelength

Meyen 2014

SFERA-III Solar Facilities for the European Research Area

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?

