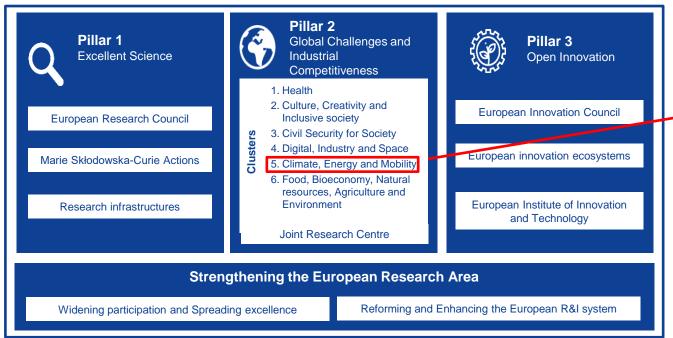
Sfera-III

Final event

CLUSTER 5 – HORIZONTE EUROPE ENERGY

Luisa Revilla

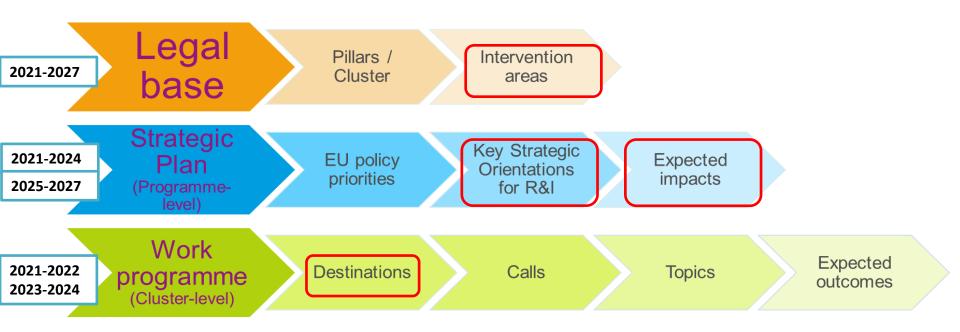
Delegada nacional – Energía- Clúster 5 – Horizonte Europa

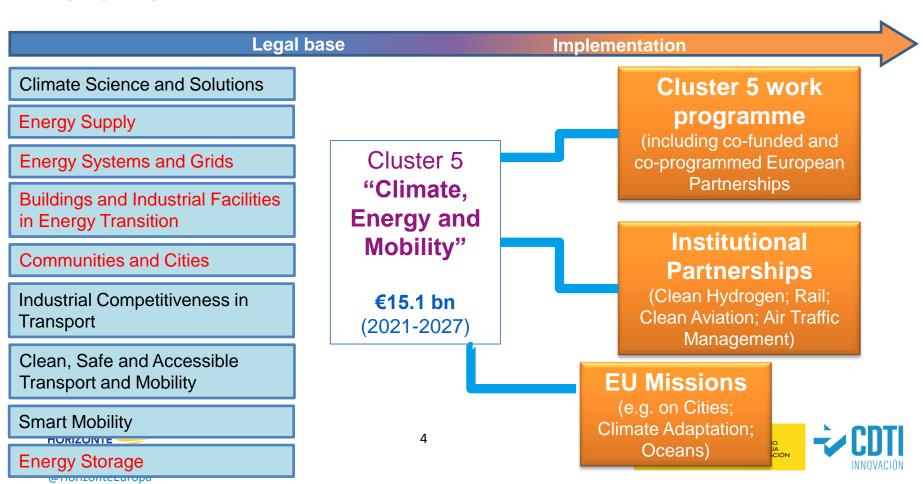

<u>Luisa.revilla@cdti.es</u>

13 de diciembre de 2023

Horizon Europe (2021-2027)

Structure


~ 15.000 M€


Programme intervention logic

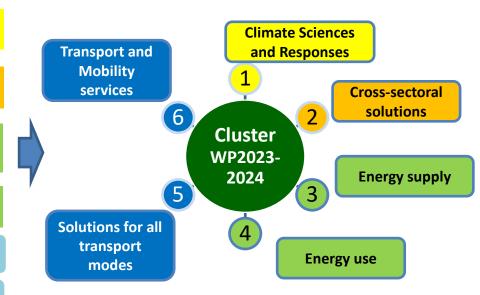
Overview

6 Expected impacts (Cluster 5- 2021-2024)

Transition to a climate-neutral and resilient society economy

and

Clean and sustainable transition of the energy and transport sectors towards climate neutrality


More efficient, clean, sustainable, secure and competitive energy supply

Efficient and sustainable use of energy, accessible for all

Towards climate-neutral and environmental friendly mobility

Safe, seamless, smart, inclusive, resilient, climate neutral and sustainable mobility systems for people and goods

WP: 6 Destinations

European Green Deal – Policy Priorities

2020

8 Jul

14 Oct

19 Nov

- A more efficient and "circular" system
- A cleaner power system
- A cleaner fuel system

- Tacking energy poverty and worst-performing buildings
- Renovation of public buildings
- Decarbonisation of Heating & Cooling
- Ambitious targets for:
 Offshore Wind Enegy 60 GW by 2030, 300 GW by 2050
 Ocean Energy – 1 GW by 2030, 40 GW by 2050

Further energy policy priorities

2021

A broad legislative package to align existing EU policy with the rew emissions raduction goal of 55% by 2000.

Reducing emissions by at least 55% by the end of 2030

2022

Reducing Europe's dependency on Russian fossil fuels imports

2023

Increasing the EU's manufacturing capacity of net-zero technologies

Cluster 5 – Climate, Energy y Mobility- Destinations-Areas

Destination 1 – Climate science

Climate science

Destination 2 – Cross-cutting solutions

Batteries

Cities

Breakthrough technologies

Citizen and stakeholder engagement

Destination 3 – Energy supply

Renewable energy

Energy system, grids and storage

CCUS

Cross-cutting activities

Destination 4 – Energy demand

Buildings

Industry

Destination 5 Clean and
competitive
solutions for all
transport modes

Zero-emission road transport

Aviation

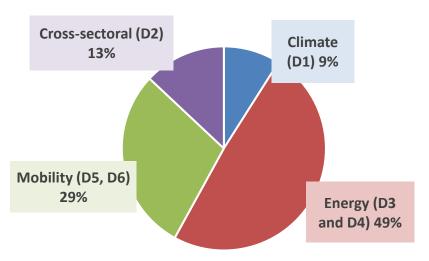
Waterborne transport

Transportrelated health and environmental issues Destination 6 -Transport and Smart Mobility services

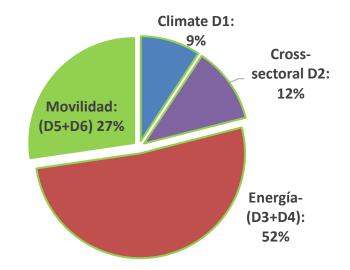
Connected,
Cooperative and
Automated
Mobility

Multimodal and sustainable transport systems for passengers and goods

Safety and resilience



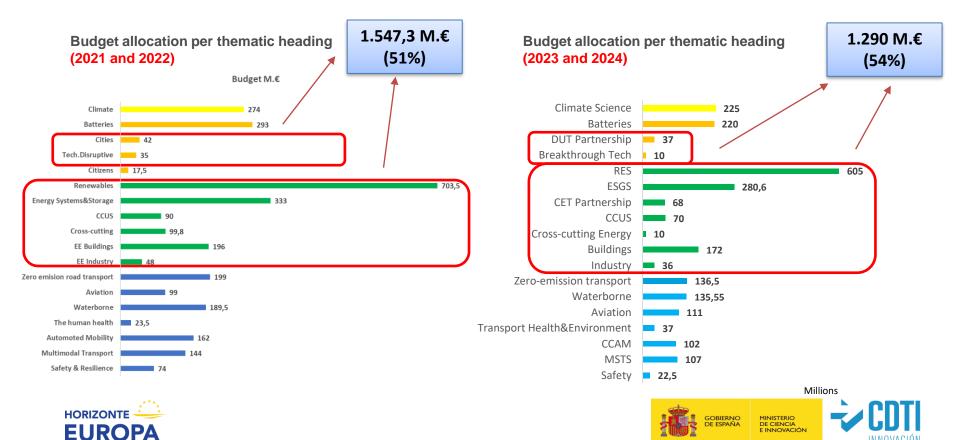
Cluster 5 - Budget allocation


Budget allocation per Destination (2021 and 2022)

Budget 2021-2022: **3.000 M€**

Budget allocation per Destination (2023 and 2024)

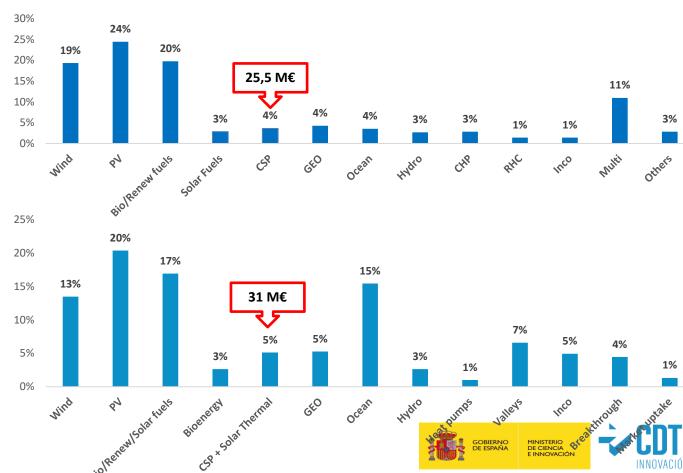
Budget 2023-2024: **2.386 M€**



Cluster 5 - Budget allocation

@HorizonteEuropa

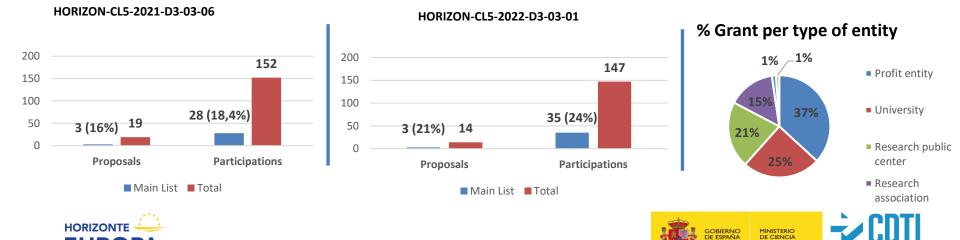
Budget allocation— Renewables


Budget allocation within renewable energy area, per technology (WP 2021-2022)

Total budget: 703,5 M€ - 46 topics (25 RIAs,19 IAs

Budget allocation within renewable energy, per technology (WP 2023-2024)

Total budget: 605 M€ - 44 topics (21 RIA, 20 IA)



11

WP 2021-2022 Topics on CSP

@HorizonteEuropa

Area	Subarea	Topic	Topic title	Type of action	Indicative Budget	Nº funded projects
Renewable Energy	Concentrated Solar Power	HORIZON-CL5-2021-D3-03-06	Novel approaches to concentrated solar power (CSP)		9,0	3
		HORI/ON_C15_7077_D3_03_01	Innovative components and/or sub-systems for CSP plants and/or concentrating solar thermal installations	IA	16,5	3
					25,5	

WP 2021-2022 - Projects funded on CSP

HORIZON-CL5-2021-D3-03-06: Novel approaches to concentrated sola				
TITLE	Acronym	LEADER	Nº Partners	Grants M.€
Air-Brayton cycle concentrated solar power future plants via redox oxides-based structured thermochemical heat exchangers/thermal boosters	ABraytCSPfuture	DLR (DE)	10	3,00
Solar Hybrid Air-sCO2 Power Plants	SHARP-sCO2	KTH-Univ (NL)	10	3,00
Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles.	HYBRIDplus	Univ.Sevilla (ES)	8	3,00
			-	9,00

HORIZON-CL5-2022-D3-03-01: Innovative components and/or sub-systems	for CSP plants and	or concent	trating solar	thermal
installations				

TITLE	Acronym	LEADER	Nº Partners	Grants M.€
	MSA-Trough	Universidad		
Development of a parabolic Trough concentrator system for Molten Salt Application		Evora (PT)	7	5,4
Air-based Solar Thermal Electricity for efficient renewable energy integration&compressed	ACTEDIA CAECOR	Fundación		
air energy storage	ASTERIX-CAESai	CENER (ES)	17	5,5
MW-scale fluidized particle-driven CSP prototype demonstration	POWDER2POWER	CNRS (FR)	11	5,3
				16,2

WP 2021-2022 – Projects funded on CSP

EUROPEAN ENTITIES in CSP FUNDED PROJECTS (Listed by grant received)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS (FR)

DEUTSCHES ZENTRUM FUER LUFT UND RAUMFAHRT EV (DE)

UNIVERSIDAD DE SEVILLA (ES)

FUNDACION CENER-CIEMAT (ES)

KUNGLIGA TEKNISKA HOEGSKOLAN (SE)

FERRUM TECNOINDUSTRIAL SL (ES)

SEICO HEIZUNGEN GMBH (DE)

CIEMAT (ES)

SOLARLITE CSP TECHNOLOGY GMBH (DE)

FUNDACION INSTITUTO MADRILEÑO DE ESTUDIOS AVANZADOS SOBRE LA ENERGIA (IMDEA

ENERGIA) (ES)

UNIVERSIDADE DE EVORA (PT)

CERTH (EL)

FRAUNHOFER (DE)

BUILD TO ZERO ENERGY SL (ES)

RODAMA MAQUINARIA SL (ES)

ODQA RENEWABLE ENERGY TECHNOLOGIES LIMITED (UK)

UNIVERSITA DEGLI STUDI ROMA TRE (IT)

LANDON EMISSION TECHNOLOGIES AS (DK)

KATHOLIEKE UNIVERSITEIT LEUVEN (BE)

ENEA (IT)

TECHNISCHE UNIVERSITAET DRESDEN (DE)

POLITECNICO DI MILANO (IT)

OBSERVATOIRE MEDITERRANEEN DE L'ENERGIE (FR)

UNIVERSIDAD DE LERIDA (UNIVERSITAT DE LLEIDA) (ES)

FUNDACION TEKNIKER (ES)

CSP-BOOST (FR)

RINA CONSULTING SPA (IT)

AALBORG CSP AS (DK)

JOHN COCKERILL RENEWABLES (BE)

ELECTRICITE DE FRANCE (FR)

EUROPEAN TURBINE NETWORK (BE)

UNIVERSITEIT TWENTE (NL)

EUROPEAN POWDER AND PROCESS TECHNOLOGY BVBA (BE)

BLUEBOX ENERGY LTD (UK)

NEBUMA GMBH (DE)

DOOSAN SKODA POWER SRO (CZ)

SAS 2IA CONSULTING (DE)

DEUTSCHES METALLFASERWERK DR SCHWABBAUER GMBH & CO KG (DE)

ENGIONIC FEMTO GRATINGS GMBH (DE)

KYOTO GROUP AS (NO)

DIACHEIRISTIS ELLINIKOU DIKTYOU DIANOMIS ELEKTRIKIS ENERGEIAS AE (EL)

INNOVATION THERM TECHNOLOGIES SL (ES)

CLANCY HAUSSLER RITA (AT)

COBRA INSTALACIONES Y SERVICIOS S.A. (ES)

PRITZKOW WALTER ERICH CHRISTIAN (DE)

APRIA SYSTEMS SL (ES)

MOROCCAN AGENCY FOR SOLAR ENERGY SA (MO)

UNIVERSITA DEGLI STUDI DI GENOVA (IT)

UNIVERSITE DE PERPIGNAN (FR)

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD (UK)

OPRA ENGINEERING SOLUTIONS BV (NL)

SOFTINWAY SWITZERLAND LLC (CH)

WP 2023-2024 Topics on CSP

HORIZON-CL5-2023-D3-02-02:

Novel thermal energy storage for CSP

Deadline: 05/09/2023

CLOSED / No results yet

Support will be given to <u>novel thermal energy storage solutions for CSP plants</u>. The thermal energy storage solutions proposed will have to be **more efficient**, cost effective and reliable than current commercial solutions and achieve similar performance in terms of cycles.

The applicants should convincingly present that the storage solution that is developed has the potential to be applied at commercial level

HORIZON-CL5-2024-D3-02-01:

Digital tools for CSP and solar thermal plants

Deadline: 21/01/2025

OPEN

Support will be given to the innovative application of digital tools (or to the application of innovative digital tools, or both) in CSP and/or concentrated solar thermal heat and/or cold and/or non-concentrated solar thermal heat and/or cold plants. Any type of application of the digital tools is in the scope (e.g., component control, performance measurement, self-diagnostic, ancillary services to the power system, digital twins, etc.). Artificial intelligence techniques are also in the scope.

Proposals are expected to bring and demonstrate measurable benefits of the proposed digital tools in terms of operation, maintenance, and flexibility of the plant.

Where applicable, the digital tools should support night baseload generation from thermal energy storage.

Where applicable, the demonstration should span a continuous interval of at least six months covering all possible incidence angles of the direct solar radiation

WP 2023-2024 - SOLAR THERMAL Topics

HORIZON-CL5-2023-D3-01-04:

Deadline: 30/03/2023

Solar Systems for Industrial Process Heat and Power (IA)

Industrial processes need considerable amounts of **heat and power**. Much of the demand for process heat, roughly 50% among the most energy-intensive manufacturing industries, including food and beverages and pulp and paper, occurs at temperatures of 400 °C or less. The Solar Thermal (ST) medium-temperature process heat or cogeneration with electricity can be an effective way to transition to clean energy sources and displace conventional fossil fuel use in industry. On the other side, Photovoltaic (PV) systems convert sun-light to direct current (DC) electricity and the electricity can be used to power or heat industrial processes directly (or via the grid) with electric heating technologies.

TITLE	Acronym	LEADER	Nº Partners	Grants M.€
Optimal Solar Systems for Industrial Heat and Power	INDHEAP	CEA (FR)	14	7,0
SOLar-driven INDustrial power And heat upgRaded with high-temperature heaT pumps for	SOLINDARITY	CERTH (EL)		
enhanced integrated process efficiencY	SOLINDAKITY	CERTH (EL)	18	7,0
				14,0

HORIZON-CL5-2023-D3-02-03:

Industrial manufacturing for lower-cost solar thermal components and systems (IA)

Deadline: 05/09/2023

CLOSED /No results yet

Support will be given to innovative solutions to <u>manufacture components and/or sub-systems and/or systems for solar thermal applications.</u> The manufacturing solutions should <u>increase the production output and reduce the cost</u> vis-à-vis current production lines. The solutions should integrate quality controls and be flexible enough to adapt to various solar thermal applications.

SOLAR FUELs Topics

Topic 2021-2022	Year	ТоА	Total Budget	Deadline	Final TRL	Acronym	Tittle	Leader	Total Grant M€
HORIZON-CL5-2022-D3-02-04: Technological interfaces between solar fuel	2022	RIA	10,0	Circular Fuels high as shy coupling of fast pyrolysis with solar energy		AALTO Korkeakoulus aatio SR (FI)	5,0		
technologies and other renewables			-7.5	27, 20, 2022		PYSOLO	PYrolysis of biomass by concentrated SOLar pOwer	Politecnico de Milano (IT)	5,0
HORIZON-CL5-2022-D3-03-03: Efficient and circular artificial	2022	RIA	10,0	10/01/2023		SUNGATE	SUnlight-driven Next Generation Artificial photosynthesis bio-hybrid TEchnology platform for highly efficient carbon neutral production of solar fuels	Fraunhofer Gesellschaft (DE)	4,9
photosynthesis			13,0	10,01,2020		REFINE	From solar energy to fuel: A holistic artificial photosynthesis platform for the production of viable solar fuels	Universitet I Oslo (NO)	5,2

Topic 2023-2024	Year	ТоА	Total Budget	Deadline	Final TRL	
HORIZON-CL5-2023-D3-02-08: Development of microalgae and/or direct solar fuel production and purification technologies for advanced aviation and /or shipping fuels	2023	RIA	8,0	05/09/2023	To TRL 4-5	CLOSED
HORIZON-CL5-2024-D3-01-04: Improvement of light harvesting and carbon fixation with synthetic biology and/or bio-inspired//biomimetic pathways for renewable direct solar fuels production	2024	RIA	8,0	16/01/2024	To TRL 3-4	OPEN

Thank you for your attention

