

Solar Facilities for the European Research Area

"Optimization and automation of the operational strategy of a CSP reactor for thermochemical hydrogen generation" Prof. Jörg Lampe, RFH - University of Applied Sciences, Cologne

NETWORKING

Summer School: "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies" - WP1 Capacity building and training activities - Cologne, Germany, September 14th-15th 2023

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

Outline

- 1) Background
 - Thermochemical hydrogen generation
 - Astor reactor and automation
- 2) Simulation model
 - Basic system behavior
 - Operational parameters
- 3) Results on optimal operational strategy
- 4) Conclusions

Outline

1) Background

- Thermochemical hydrogen generation
- Astor reactor and automation

2) Simulation model

- Basic system behavior
- Operational parameters
- 3) Results on optimal operational strategy

4) Conclusions

Solar thermal power plants

solar tower 1500 °C

3500 °C

parabolic trough 400 - 500 °C

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies"

Source: DLR

Jörg Lampe

Direct thermochemical water splitting

Jörg Lampe

Jörg Lampe

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Jörg Lampe

History of Hydrosol technology

Source: DLR

ASTOR reactor

Astor reactor, Synlight lab...

250 kW prototype reactor

...and solar tower in Julich, Germany

- Automation and control
- Optimization of material, design + operational strategy
- Modeling of reactor and process

Automation

Heliostat field control

Power input
 → operating temperature

Control for three reactors

- One physical + two virtual reactors
- Realtime model
 - \rightarrow Hardware-in-the-Loop

DNI prognosis

- Temporarily shadowing
- Adaption of optimal operation

Automation and control

Temperature feedback control

- Process behavior depends on operating point (temp, mass flows)
- Surface temperature as control variable
- Backside temperature as measured variable
- → Advanced gain scheduling or model predictive control

Outline

1) Background

- Thermochemical hydrogen generation
- Astor reactor and automation

2) Simulation model

- Basic system behavior
- Operational parameters

3) Results on optimal operational strategy

4) Conclusions

Simulation model

→ Physical modelling, spatial discretization

→ Discretized system of PDEs with additional constraints leads to DAE of order ~3500

- Some processes are nonlinear (chem. reaction, flow through porous media)
- Some processes have fast dynamic (valves, chemical reaction), others are slow (temperature change)
- Radiosity distribution, reflection, absorption, transmission

Temperature

dependent

20°C

Receiver

consists of

109 blocks

Thermochemical relations of Ceria redox cycling

- Reduction extent δ from $CeO_{2-\delta}$
- Equilibrium values for $p_{O_2} = 10^{-5}$ bar at reduction
- Value of δ_{max} indicates hydrogen generation potential
- Isothermal operation only reasonable at high temperatures + steam flows
- Large temp-swings relate to high δ_{max}
- Larger swings require longer cycles

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Basic system behavior

3h temperature swing cycle with $\Delta \vartheta = 700 \ ^{\circ}C$

- 2h reduction at $\vartheta_{red} = 1500 \ ^{\circ}C$ with N₂ flow of 100 kg/h
- 1h oxidation at $\vartheta_{ox} = 800 \ ^{\circ}C$ with steam flow of 15 kg/h
- 27 g H_2 are generated in the cycle
- Back temperature needs long until steady state
- Most H₂ is generated within first 10 minutes of oxidation

Operational parameters for optimization

Process parameter	Lower bound	Upper bound	
ϑ_{red}	1200 °C	1400 / 1500 / 1600 °C	
ϑ_{ox}	800 °C	1400 / 1500 / 1600 °C	
t_{red}	30 s	900 s	
t_{ox}	30 s	900 s	
\dot{m}_{N_2}	100 kg/h	300 kg/h	
\dot{m}_{H_2O}	15 kg/h	300 kg/h	

Plant efficiency is used as cost function

$$\eta_{plant} = \frac{m_{H_2} \cdot HHV_{H_2}}{Q_{solar} + E_{el,vap} + m_{N_2} \cdot e_{N_2}}$$

Outline

1) Background

- Thermochemical hydrogen generation
- Astor reactor and automation

2) Simulation model

- Basic system behavior
- Operational parameters

3) Results on optimal operational strategy

4) Conclusions

1.2

Optimal parameters for $\vartheta_{max} = 1400 \ ^{\circ}C$

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Optimal parameters for $\vartheta_{max} = 1500 \ ^{\circ}C$

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies"

Jörg Lampe

23

Optimal parameters for $\vartheta_{max} = 1600 \ ^{\circ}C$ and $1700 \ ^{\circ}C$

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Optimal operational strategy

- Reduction temperature at upper bound \rightarrow the larger the better
- Optimal strategy \rightarrow large and fast temperature swing $\rightarrow \Delta \vartheta \approx 450 - 560 \ ^{\circ}C$ $\rightarrow t_{cycle} = t_{red} + t_{ox} = 7.5 \rightarrow 3.1 \ min$

→ with sufficient steam and nitrogen flow → $\dot{m}_{H_20} \approx 120 \ kg/h$, $\dot{m}_{N_2} \approx 140 - 230 \ kg/h$

- The larger the reduction temperature...
 - \rightarrow ...the shorter the optimal cycle
 - \rightarrow ...the more H₂/cycle is generated

Interestingly, isothermal operation...

- \rightarrow ...is not much worse!
- \rightarrow ... requires huge amount of steam
- \rightarrow ... has even shorter cycles
- \rightarrow ...may be superior if number of thermal cycles included in cost function

Design study for two locations

- Optimal strategy for $\vartheta_{max} = 1400 \ ^{\circ}C$
- Multiple reactors in slightly shifted operation
 → uniform power demand
- Location considered by 12 typical daily DNI curves
- Heliostat field 10% oversized w.r.t. solar power in June
- Generated annual H_2/m^2 scales with plant efficiency

	Julich	Tabuk
Annual DNI [kWh/m ²]	997.8	2946.4
Monthly average DNI [kWh/m ²]	30-120	205-295
Heliostat field size per MW_{th} [m ²]	325.8	133.6
Average annual reactor running time [h]	211.8	262.6
Average annual H_2 production per reactor [kg]	97.9	120.4
Annual produced H_2 per heliostat area $[kg/m^2]$	0.25	0.76

Conclusions

Optimal strategy for fixed-bed reactor types \rightarrow large and fast temperature swings

Specific optimal process depends on

- Reactor design \rightarrow heat losses, insulation
- Material limitations \rightarrow maximal temperatures
- Plant layout → maximal fluid flows, valve switching times

Prototype plant efficiency for different reduction temperatures

• 1.2% for 1400 °C | 2.1% for 1500 °C | 3.9% for 1600 °C | 5.6% for 1700 °C

Efficiency can be significantly increased by reactor re-design

- Reducing radiative heat losses, e.g. by smaller aperture
- Employing high-temperature resistant material

References

- 1. Lampe, J., Menz, S., Akinci, K., Böhm, K., Seeger, T., Fend, T., Optimizing the operational strategy of a solar-driven reactor for thermochemical hydrogen production, *International Journal of Hydrogen Energy*, no. 47, pp. 14453–14468, 2022, doi: 10.1016/j.ijhydene.2022.02.193.
- Menz, S., Lampe, J., Krause, J., Seeger, T., Fend, T., Holistic energy flow analysis of a solar driven thermo-chemical reactor set-up for sustainable hydrogen production, *Renewable Energy*, no. 189, pp. 1358–1374, 2022, doi: 10.1016/j.renene.2022.03.033.
- Bulfin, B., Lowe, A.J., Keogh, K.A., Murphy, B.E., Lübben, O., Krasnikov, S.A., Shvets, I.V., Analytical model of CeO2 oxidation and reduction, *Journal of Physics and Chemistry*, no. 117, pp. 24129–24137, 2013. [Online]. Available: http://pubs.acs.org/doi/abs/10.1021/jp406578z.
- Bulfin, B., Call, F., Lange, M., Lübben, O., Sattler, C., Pitz-Paal, R. and Shvets, I. V., Thermodynamics of CeO2 Thermochemical Fuel Production, *Energy Fuels*, vol. 29, no. 2, pp. 1001–1009, 2015, doi: 10.1021/ef5019912.

Project partners and funding

- German Aerospace Center (DLR)
- Stausberg & Vosding GmbH
- RFH University of Applied Sciences Cologne

• Funding by European Regional Development Fund

Investment for Growth and Employment N UNION

