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Solar thermal power plants
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parabolic dish 

3500 °C

solar tower

1500 °C

parabolic trough

400 - 500 °C

→ thermochemical

hydrogen generation 



Solar reactor located in focal point of 

concentrated solar power (CSP)
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Direct thermochemical water splitting
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Source: DLR, Solar-thermochemical water splitting at

Plataforma Solar in Almería (Owner: CIEMAT, Spain)
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Cycle process – step 1
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Ceria (Ce2O3 /CeO2)

Source: DLR

𝐻2𝑂

O𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝜗𝑜𝑥 = 800 − 1600 °𝐶 :

 𝐶𝑒𝑂2−𝛿+𝛿𝐻2𝑂 
 −∆ℎ 

𝐶𝑒𝑂2 + 𝛿𝐻2

Source: DLR
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Cycle process – step 2

SFERA-III Summer School “Smart CSP: How Smart Tools, Devices, and Software 
can help improve the Design and Operation of Concentrating Solar Power Technologies” 9

Ceria (Ce2O3 /CeO2)

Source: DLR

𝑁2

Source: DLR
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𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝜗𝑟𝑒𝑑 = 1600 °𝐶 :

 𝐶𝑒𝑂2 

 +∆ℎ 
𝐶𝑒𝑂2−𝛿 +

𝛿

2
𝑂2



SFERA-III
Solar Facilities for the European Research Area

Jörg Lampe

Cycle process – step 2

SFERA-III Summer School “Smart CSP: How Smart Tools, Devices, and Software 
can help improve the Design and Operation of Concentrating Solar Power Technologies” 10

Ceria (Ce2O3 /CeO2)
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Source: DLR
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History of Hydrosol technology
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Source: DLR
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ASTOR reactor
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250 kW prototype 
reactor

Source: DLR

Astor reactor, Synlight lab… 

• Automation and control 

• Optimization of material, design + operational strategy

• Modeling of reactor and process

Source: DLR

…and solar tower in Julich, Germany 
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Automation
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Heliostat field control

• Power input 

→ operating temperature

Control for three reactors

• One physical + two virtual reactors

• Realtime model

→ Hardware-in-the-Loop

DNI prognosis

• Temporarily shadowing

• Adaption of optimal operationSource: DLR, Solar-thermochemical water splitting at

Plataforma Solar in Almería (Owner: CIEMAT, Spain)
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Automation and control
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Source: DLR, IR Camera

Temperature of absorber surface
Temperature feedback control
• Process behavior depends on

operating point (temp, mass flows)

• Surface temperature as

control variable

• Backside temperature as

measured variable

→ Advanced gain scheduling or

model predictive control
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Simulation model
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→Physical modelling, 

spatial discretization

→Discretized system of 

PDEs with additional 

constraints leads to 

DAE of order ~3500
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Multiphysical model
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Chemical 
Domain

Thermal 
Domain

Fluid 
Domain

• Some processes are nonlinear (chem. reaction,
flow through porous media)

• Some processes have fast dynamic (valves, chemical 
reaction), others are slow (temperature change)

• Radiosity distribution, reflection, absorption, transmission

Receiver 

consists of 

109 blocks

Source: DLR

20°C                800 °C           1400 °C 

Temperature

dependent

properties
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Thermochemical relations of Ceria redox cycling

SFERA-III Summer School “Smart CSP: How Smart Tools, Devices, and Software 
can help improve the Design and Operation of Concentrating Solar Power Technologies” 18

• Reduction extent 𝛿 from 𝐶𝑒𝑂2−𝛿

• Equilibrium values for 𝑝𝑂2
= 10−5 bar

at reduction

• Value of 𝛿𝑚𝑎𝑥 indicates hydrogen 
generation potential

• Isothermal operation only reasonable at 
high temperatures + steam flows

• Large temp-swings relate to high 𝛿𝑚𝑎𝑥

• Larger swings require longer cycles

Non-stoichiometric coefficient 𝛿(𝑇)
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Basic system behavior
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• 2h reduction at 𝜗𝑟𝑒𝑑 = 1500 °𝐶 
with N2 flow of 100 kg/h

• 1h oxidation at 𝜗𝑜𝑥 = 800 °𝐶
with steam flow of 15 kg/h

• 27 g H2 are generated in the cycle

• Back temperature needs long until 
steady state

• Most H2 is generated within first 10 
minutes of oxidation

3h temperature swing cycle with Δ𝜗 = 700 °𝐶
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Operational parameters for optimization
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Process parameter Lower bound Upper bound

𝜗𝑟𝑒𝑑 1200 °C 1400 / 1500 / 1600 °C

𝜗𝑜𝑥 800 °C 1400 / 1500 / 1600 °C

𝑡𝑟𝑒𝑑 30 s 900 s

𝑡𝑜𝑥 30 s 900 s

ሶ𝑚𝑁2
100 kg/h 300 kg/h

ሶ𝑚𝐻2𝑂 15 kg/h 300 kg/h

𝜂𝑝𝑙𝑎𝑛𝑡 =
𝑚𝐻2

∙ 𝐻𝐻𝑉𝐻2

𝑄𝑠𝑜𝑙𝑎𝑟 + 𝐸𝑒𝑙,𝑣𝑎𝑝 + 𝑚𝑁2
∙ 𝑒𝑁2

Plant efficiency is used

 as cost function
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Optimal parameters for 𝝑𝒎𝒂𝒙 = 𝟏𝟒𝟎𝟎 °𝑪
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Process 
parameter

𝜗𝑟𝑒𝑑[°C] 𝜗𝑜𝑥[°C] 𝑡𝑟𝑒𝑑[s] 𝑡𝑜𝑥[s] ሶ𝑚𝑁2
[kg/h] ሶ𝑚𝐻2𝑂[kg/h] 𝜂𝑝𝑙𝑎𝑛𝑡[%]

Optimal value 1400 892.7 278.5 169.0 231.3 105.8 1.20

Contour plot of plant 

efficiency

(for temperatures)

3D model function 

of plant efficiency

(for cycle times) 
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Optimal parameters for 𝝑𝒎𝒂𝒙 = 𝟏𝟓𝟎𝟎 °𝑪
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Contour plot of

plant efficiency

(for cycle times)

3D model function 

of plant efficiency

(for temperatures) 

Process 
parameter

𝜗𝑟𝑒𝑑[°C] 𝜗𝑜𝑥[°C] 𝑡𝑟𝑒𝑑[s] 𝑡𝑜𝑥[s] ሶ𝑚𝑁2
[kg/h] ሶ𝑚𝐻2𝑂[kg/h] 𝜂𝑝𝑙𝑎𝑛𝑡[%]

Optimal value 1500 1050.4 237.6 150.9 163.9 130.4 2.13
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Optimal parameters for 𝝑𝒎𝒂𝒙 = 𝟏𝟔𝟎𝟎 °𝑪 and 𝟏𝟕𝟎𝟎 °𝑪
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Process 
parameter

𝜗𝑟𝑒𝑑[°C] 𝜗𝑜𝑥[°C] 𝑡𝑟𝑒𝑑[s] 𝑡𝑜𝑥[s] ሶ𝑚𝑁2
[kg/h] ሶ𝑚𝐻2𝑂[kg/h] 𝜂𝑝𝑙𝑎𝑛𝑡[%]

Optimal value 1600 1080.4 110.0 123.6 137.5 70.8 3.92

Process 
parameter

𝜗𝑟𝑒𝑑[°C] 𝜗𝑜𝑥[°C] 𝑡𝑟𝑒𝑑[s] 𝑡𝑜𝑥[s] ሶ𝑚𝑁2
[kg/h] ሶ𝑚𝐻2𝑂[kg/h] 𝜂𝑝𝑙𝑎𝑛𝑡[%]

Optimal value 1600 1600 32.5 67.8 300.0 300 3.77

Process 
parameter

𝜗𝑟𝑒𝑑[°C] 𝜗𝑜𝑥[°C] 𝑡𝑟𝑒𝑑[s] 𝑡𝑜𝑥[s] ሶ𝑚𝑁2
[kg/h] ሶ𝑚𝐻2𝑂[kg/h] 𝜂𝑝𝑙𝑎𝑛𝑡[%]

Optimal value 1700 1139.5 93.1 90.9 144.6 126.6 5.62

temp-swing

vs.

isothermal

𝜗𝑟𝑒𝑑 = 𝜗𝑜𝑥
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Optimal operational strategy
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• Reduction temperature at upper bound → the larger the better

• Optimal strategy → large and fast temperature swing

→ Δ𝜗 ≈ 450 − 560 °𝐶
→ 𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑟𝑒𝑑 + 𝑡𝑜𝑥 = 7.5 → 3.1 𝑚𝑖𝑛

→ with sufficient steam and nitrogen flow

→ ሶ𝑚𝐻2𝑂 ≈ 120 𝑘𝑔/ℎ, ሶ𝑚𝑁2
≈ 140 − 230 𝑘𝑔/ℎ

• The larger the reduction temperature…

→ …the shorter the optimal cycle

→ …the more H2/cycle is generated

Interestingly, isothermal operation…

→…is not much worse!

→ ... requires huge amount of steam

→… has even shorter cycles 

→ …may be superior if number of 

thermal cycles included in cost function
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Design study for two locations
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Julich Tabuk

Annual DNI [kWh/m2] 997.8 2946.4

Monthly average DNI [kWh/m2] 30-120 205-295

Heliostat field size per MWth [m2] 325.8 133.6

Average annual reactor running time [h] 211.8 262.6

Average annual H2 production per reactor [kg] 97.9 120.4

Annual produced 𝐇𝟐 per heliostat area [𝐤𝐠/𝐦𝟐] 0.25 0.76

• Optimal strategy for 𝜗𝑚𝑎𝑥 = 1400 °𝐶 

• Multiple reactors in slightly shifted operation

→ uniform power demand

• Location considered by 12 typical daily DNI curves

• Heliostat field 10% oversized w.r.t. solar power in June

• Generated annual H2/m
2 scales with plant efficiency 
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Conclusions
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Optimal strategy for fixed-bed reactor types → large and fast temperature swings

Specific optimal process depends on
• Reactor design  → heat losses, insulation

• Material limitations  → maximal temperatures

• Plant layout  → maximal fluid flows, valve switching times

Prototype plant efficiency for different reduction temperatures
• 1.2% for 1400 °C  |  2.1% for 1500 °C  |  3.9% for 1600 °C  |  5.6% for 1700 °C

Efficiency can be significantly increased by reactor re-design
• Reducing radiative heat losses, e.g. by smaller aperture

• Employing high-temperature resistant material
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Thank you for your kind

attention!

Source: DLR

Jörg Lampe

Joerg.Lampe@RFH-Koeln.de 
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