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PID-Control

• Goal:

• Find and track a lane

• Avoid obstacles   

Example: Steering a vehicle

Source: M. Schulze-Darup

Model Predictive Control

• MPC can predict what 
the future deviation will 
be

• Predictive behavior

• The PID controller only 
looks at whether it is 
currently in the lane

• Purely reactive behavior
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PID-Regler

• Goal:

• Find and track a lane

• Avoid obstacles   

Example: Steering a vehicle

Quelle: M. Schulze-Darup

 
Model Predictive Control

• The PID controller only 
looks at whether it is 
currently in the lane

• Purely reactive behavior

• Prediction model: How does the vehicle move if the 

steering wheel is operated?

• Constraints: maximum steering wheel angle (radius of 

curvature), stay on the road 

• Disturbances: obstacles on the street

• Reference value: desired track, lane

• Cost function: reach the destination in minimal distance

• MPC can predict what 
the future deviation will 
be

• Predictive behavior



Introduction
Why Applying MPC to Molten Salt Receivers

Rudolf Popp
SFERA-III Summer School “Smart CSP: How Smart Tools, Devices, and Software 

can help improve the Design and Operation of Concentrating Solar Power Technologies” 6

• Control variables:
➢ 𝑇𝑜𝑢𝑡,1 , 𝑇𝑜𝑢𝑡,2

➢ Set point temperature: 565 °𝐶

• Input variables
➢ Manipulated variable: Mass flows ሶ𝑚1 and ሶ𝑚2

➢ Measurable disturbance: Distribution of solar flux 
density on the receiver ሶ𝑞 𝑧

• Constraints: 
➢ Mass flow, salt temperatures, absorbed flux density

• Slow dynamics 
➢ Settling time ~ 150 s - 500 s

• Constraints
➢ Qualities, to be restricted, not measurable
➢ Limits can be exceeded dynamically at 

different locations. 

ChallengesControl Task
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Temperature limits Salt Film

transient (max. 5 min) 602 °C 616 °C

steady 580 °C 600 °C

• Constraining salt temperatures

and film temperatures to prevent 

degradation 
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Absorbed flux density

0.3 0.6

• Avoid mechanical stress  due to 

high temperature gradients

• Allowable flux density (AFD): 𝑓 𝑇𝑓𝑙 , ሶ𝑚         

 [ Vant-Hull 2002]

• Challenge: Estimate both the AFD as a limit 

and the absorbed flux density correctly

with the internal model

Temperature limits Salt Film

transient (max. 5 min) 602 °C 616 °C

steady 580 °C 600 °C
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Controlling the Molten Salt Receiver



Controlling the Molten Salt Receiver
Conventional Control
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Set point

Plant

manipulated 
variable

Controlled 
variable 

PID

FF
Flux clear sky

• Conventional Control: PID  + Feed 
Forward control

➢ FF: Designed to keep set point 
temperature at clear sky 
condition

• Strategy to avoid violations of 
temperature limits

➢ Cloud Standby (CSP) if 
𝑇𝑟𝑒𝑐,𝑜𝑢𝑡 < 510 °𝐶
Feedback control is deactivated

➢ If salt temperature limits are 
violated, some heliostats are 
defocused

𝑇𝑜𝑢𝑡

Flux density ሶ𝑞(𝑧)

𝑤 = 𝑦𝑠𝑒𝑡

𝑦
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manipulated 
variable

MPC

Observer

Model

Opitmization

system 
states

Controlled 
variable 

Reference
• Model: Prediction of system behaviour

• Observer: Calculate the full system state 

as starting point for the prediction

• Optimization of the control variable 

considering prediction and constraints

Plant

ሶ𝑞(𝑧)

𝑇𝑜𝑢𝑡

𝑇𝑜𝑢𝑡,1…6

Prediction

Estimation

Measurement

Flux density
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Continuous state space model

ሶ𝒙 𝑡 = 𝒇 (𝒙 𝑡 ,⋅ 𝒖 𝑡 , 𝒒(𝑡))

𝒚 𝑡 = 𝒈(𝒙 𝑡 , 𝒖 𝑡 , 𝒒(𝑡))

𝑓𝑜𝑟 𝑖 ≔ 0 𝑡𝑜 𝑁𝑢

𝒙 𝑘 + 1 = 𝒇(𝒙 𝑘 ,⋅ 𝒖 𝑘 , 𝒒 𝑘 )
𝒚 𝑘 + 1 = 𝒈(𝒙(𝑘), 𝑢(𝑘))

𝐽 = Δ𝒖 ⋅ 𝑘 𝑹
2

𝒖l𝑏 ≤ 𝒖 𝑘  ≤  𝒖𝑢𝑏

𝑒𝑛𝑑

𝒙 𝑘 + 1 = 𝑭(𝒙 𝑘 ,⋅ 𝒖 𝑘 , 𝒒(𝑘))

           𝒚 𝑘 = 𝒈(𝒙 𝑘 , 𝒖 𝑘 , 𝒒(𝑘))

Predict the future system behavior

min
𝒖

𝐽

𝒉(𝒙) ≤ 𝑩Limits

subject to:

Discretize equations in time, by integrating the 
differential equation

𝑓𝑜𝑟 𝑖 ≔ 𝑁1 𝑡𝑜 𝑁2

𝒙 𝑘 + 1 = 𝒇(𝒙 𝑘 ,⋅ 𝒖 𝑘 , 𝒒 𝑘 )
𝒚 𝑘 + 1 = 𝒈(𝒙(𝑘), 𝑢(𝑘))

𝐽 = 𝒚 ⋅ 𝑘 − 𝒓 ⋅ 𝑘 𝑸
2

𝑩lb  ≤  𝒉 𝒙 𝑘 , 𝒖 𝑘 , 𝒒 𝑘  ≤  𝑩ub

𝑒𝑛𝑑
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Setting Up the MPC
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Differential equation from energy balance

1  ሶ𝑞𝑖𝑛 − ሶ𝑞𝑙𝑜𝑠𝑠,𝑟𝑎𝑑 − ሶ𝑞𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣 − ሶ𝑞𝑎𝑏𝑠 = 0

2  𝜌𝑇𝑉𝑇𝑐𝑇

𝑑𝑇𝑓𝑖𝑙𝑚

𝑑𝑡
= ሶ𝑞𝑎𝑏𝑠 − ሶ𝑞𝑐𝑜𝑛𝑣

3  𝜌𝑓𝑙𝑉𝑓𝑙𝑐𝑓𝑙

𝑑𝑇𝑓𝑙

𝑑𝑡
= ሶ𝑞𝑐𝑜𝑛𝑣 − 𝑐𝑓𝑙

ሶ𝑚

𝑛𝑝𝑛𝑡

(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)

𝐿

⇒  ሶ𝒙 = 𝒇(𝒙, 𝑢, ሶ𝒒)

𝑥 =

𝑇𝑓𝑙,1 

𝑇𝑓𝑖𝑙𝑚,1 

𝑇𝑚𝑎𝑛𝑖,1

⋮
𝑇𝑓𝑙,6 

𝑇𝑓𝑖𝑙𝑚,6 

𝑇𝑚𝑎𝑛𝑖,6
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Differential equations from energy balance

1  ሶ𝑞𝑖𝑛 − ሶ𝑞𝑙𝑜𝑠𝑠,𝑟𝑎𝑑 − ሶ𝑞𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣 − ሶ𝑞𝑎𝑏𝑠 = 0

2  𝜌𝑇𝑉𝑇𝑐𝑇

𝑑𝑇𝑓𝑖𝑙𝑚

𝑑𝑡
= ሶ𝑞𝑎𝑏𝑠 − ሶ𝑞𝑐𝑜𝑛𝑣

3  𝜌𝑓𝑙𝑉𝑓𝑙𝑐𝑓𝑙

𝑑𝑇𝑓𝑙

𝑑𝑡
= ሶ𝑞𝑐𝑜𝑛𝑣 − 𝑐𝑓𝑙

ሶ𝑚

𝑛𝑝𝑛𝑡

(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)

𝐿

⇒  ሶ𝒙 = 𝒇(𝒙, 𝑢, ሶ𝒒)

𝑥 =

𝑇𝑓𝑙,1 

𝑇𝑓𝑖𝑙𝑚,1 

𝑇𝑚𝑎𝑛𝑖

⋮
𝑇𝑓𝑙,6 

𝑇𝑓𝑖𝑙𝑚,6 

𝑇𝑚𝑎𝑛𝑖,6

x

x

x

x

x

x

1
Receiver length 

𝑧

𝐿

𝑻𝑓𝑙,𝑚𝑎𝑥 =
𝝏𝒇

𝝏𝒙

−𝟏 𝝏𝒇

𝝏 ሶ𝒒
ሶ𝒒𝒎𝒂𝒙 − ሶ𝒒𝒎𝒆𝒂𝒏 + 𝑻𝑓𝑙,𝑚𝑒𝑎𝑛

𝑻𝑓𝑖𝑙𝑚 𝒛 = 𝒈𝟏(𝒒𝑖𝑛 𝒛 , 𝑻𝑓𝑙_𝑚𝑎𝑥 𝒛 , ሶ𝒎)

ሶ𝒒𝑎𝑏𝑠 𝑧 = 𝒈𝟐(𝒒𝑖𝑛 𝑧 , 𝑻𝑓𝑙_𝑚𝑎𝑥 𝑧 , ሶ𝑚)

Static nonlinear equations
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Prediction

Horizon

𝑘 + 𝑁𝑢 𝑘 + 𝑁2

𝑇𝑜𝑢𝑡(
∙ |𝑘)

𝑇𝑓𝑖𝑙𝑚,𝑚𝑎𝑥(∙ |𝑘)

𝑟 = 565 °𝐶

𝑇𝑓𝑖𝑙𝑚,𝑙𝑖𝑚𝑖𝑡 = 600 °𝐶 

min
𝑢0 …𝑢𝑁𝑢
𝑠0…𝑠𝑁2

𝐽 =σ𝑘=0
𝑁2 ∥ 𝑟𝑘 − 𝑇𝑜𝑢𝑡 ∥𝑄𝑦

2 + ∥ 𝒔𝑘 ∙ 𝑘 ∥𝑄𝑓

2 + ∥ 𝒔𝑘 ∙ 𝑘  ∥Ql
 + σ𝑘=0

𝑁𝑢  ∥ ∆𝑢(∙ |𝑘)  ∥𝑅
2

𝑠. 𝑡.  𝒙(𝑘 + 1) = 𝑭 𝒙 𝑘 , ሶ𝒒(𝑧, 𝑘), 𝑢(𝑘) ,

− 0,2 𝑢𝑚𝑎𝑥 ≤  ∆𝑢 ≤ 0,2 𝑢𝑚𝑎𝑥

ሶ𝒒𝑎𝑏𝑠  −  𝒔𝑎𝑓𝑑 ≤ 𝒂𝒇𝒅 

𝑻𝑓𝑖𝑙𝑚  −  𝒔𝑓𝑖𝑙𝑚 ≤ 𝑻𝑓𝑖𝑙𝑚,𝑙𝑖𝑚𝑖𝑡  

0,2 𝑢𝑚𝑎𝑥 ≤ 𝑢 ≤ 1,1 𝑢𝑚𝑎𝑥

𝒔𝑘 =
𝑠𝑓𝑖𝑙𝑚

𝑠𝑎𝑓𝑑

• Sample time in prediction 𝑇𝑠 = 5 𝑆𝑒𝑘

• Prediction horizon 𝑁2= 36

≜ 36 ∙ 5 𝑆𝑒𝑘 = 3 𝑀𝑖𝑛

• Control Horizon 𝑁𝑢=10

• Calculation time: 1.5 sec

Cost function

𝒔𝑘  ≥ 0
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Results
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Cloud Coverage Rate (CCR)
• 30 %
• 60 %

32 test scenarios defined
• Cloud passage within 1 hour

• 2 branches seperatly

• Wind speed inversion after 30 min

CCR 60 %CCR 30 %
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32 Scenarios defined 
• Cloud passage within 1 hour
• 2 branches considered
• Wind speed inversion after 30 min

Cloud coverage (CCR)
• 30 %
• 60 %

Day time
• 9 am
• 12 pm

Wind speed and direction
• 5 m/s, 10 m/s
• N, S, W, E

Wind speed: 10 m/s Wind speed: 5 m/s 
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Higher wind speeds lead to a more transient flux input
➢ Greater challenge for the controller
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Film temperature
• Max. value 597 ℃
• No limit violation

Absorbed flux density:
• No AFD violation

Film temperature
• Max. value 627 °C
• Several and critical limit violations

Absorbed flux density:
• 60 % violation of AFD

Outlet temperature:
• Control deviation (RMSE) = 20.1 K

Outlet temperature:
• Control deviation (RMSE) = 22.7 K

MPC PID
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MPC PID

Thermal efficiency 85,97 % 85,96 %

Mean control deviation (rmse) 15,3 K 27,4 K

violations of film temperature limits

Average of max violations 0,32 K 41 K

Cases:  > 16 K (critical violation) 0 % 88 %

0 - 16 K 21 % 12 %

No violation 79 % 0 %

violations of AFD

Average of max violations 1,5 % 28 %

Cases :  > 5 % 0 % 79 %

0 – 3 % 42 % 0 %

No violation 58 % 21 %
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• The Model Predictive Control can provide a safe operation without the 
necessity to defocus heliostats

• The conventional control approach does not explicitly comply with the 
operation constraints and provides poor safety performance. It needs further 
heuristics that are difficult to adjust to work properly.

• The tracking behavior of the outlet temperature is worse than with MPC.
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Thank you for your attention! 
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