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Introduction

— Example: Steering a vehicle

Goal:

*  Find and track a lane

* Avoid obstacles

Source: M. Schulze-Darup

— PID-Control

The PID controller only
looks at whether it is
currently in the lane

Purely reactive behavior

Rudolf Popp

Model Predictive Control

* MPC can predict what
the future deviation will
be

* Predictive behavior

'y
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Introduction

— Example: Steering a vehicle

* Prediction model: How does the vehicle move if the
steering wheel is operated?

* Constraints: maximum steering wheel angle (radius of
curvature), stay on the road

e Disturbances: obstacles on the street
* Reference value: desired track, lane

Cost function: reach the destination in minimal distance

Quelle: M. Schulze-Darup

Model Predictive Control

* MPC can predict what

the future deviation will
be

Predictive behavior

Rudolf Popp
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Introduction

receiver

heliostat field

— Control Task

*  Control variables:

> Tout,l ’ Tout,Z
» Set point temperature: 565 °C

* Input variables

» Measurable disturbance: Distribution of
density on the receiver §(z)

*  Constraints:

» Manipulated variable: Mass flows 1, and m,

» Mass flow, salt temperatures, absorbed flux density

solar flux

Rudolf Popp

— Challenges

*  Slow dynamics
» Settling time ~ 150 s-500s

¢ Constraints
» Qualities, to be restricted, not measurable
» Limits can be exceeded dynamically at
different locations.
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Introduction

Film temperature limit: 600 °C

Temperature limits Salt Film
transient (max. 5 min) 602 °C 616 °C
steady 580°C 600°C

e Constraining salt temperatures
and film temperatures to prevent
degradation

Temperature / C°

Z
Receiver axial direction / ( T )
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Introduction
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* Challenge: Estimate both the AFD as a limit
0.3 0.6 1 and the absorbed flux density correctly
Receiver length z/L with the internal model
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Controlling the Molten Salt Receiver

Controlling the Molten Salt Receiver
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Controlling the Molten Salt Receiver

I‘

 Conventional Control: PID + Feed Flux density 4(z) |
Forward control Flux clear sky

» FF: Designed to keep set point

temperature at clear sky Controlled
condition Set point variable y
» Strategy to avoid violations of W = Yoot >9 _ T T >
temperature limits — manipulated out
variable

» Cloud Standby (CSP) if
Trecout < 510°C
Feedback control is deactivated

» If salt temperature limits are
violated, some heliostats are
defocused
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Controlling the Molten Salt Receiver

« Model: Prediction of system behaviour

e Observer: Calculate the full system state
as starting point for the prediction

e Optimization of the control variable

considering prediction and constraints

Rudolf Popp can help improve the Design and Operation of Concentrating Solar Power Technologies”
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Controlling the Molten Salt Receiver

Continuous state space model
. 4 Reference Value Trajectory
x(t) = f (X(t), u(t): Q(t)) r{-|k)

L EELE EEET TR PEEE
y(t) = g(x(t), u(t), q(1))

Controlled Value Trajectory
y(-[k)

Discretize equations in time, by integrating the
differential equation

Model

Actuated Value Trajectory

x(k + 1) = F(x(k), u(k), q(k)) : ul[k)
— 1
y(k) = g(x(k), u(k)’q(k)) | | Clnnn'nllHnrizclm | | | X
T prediction Horizon | e

Predict the future system behavior Past <— |+ Future (Prediction) -
fori:= 0toN, fori:=NjtoN,

x (k+1) = f(x(k), u(k), q(k)) x (ke + 1) = f(x(k),- ulk), q(k)) min

y (k+1) = g(x(k), uk)) y (k+1) = g(x(k),u(k)) u

J = 8w 1012 ] = lyC 1) — 7GO3 subject to:

wy < u(k) < uy, By, < h(x(),u(k), q(k)) < By h(%) < Bimits

end end
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Controlling the Molten Salt Receiver

Setting Up the MPC
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Setting Up the MPC

Differential equation from energy balance U_;'

(1) C.Iin - éIloss,rad - éIloss,conv - éIabs =0

dTr . .
(2) prVrcr le”;m = Gabs — Yconv

dTﬂ _ m (Toue — Tin)
(3) prVrice ap = deonw ~ 1 = .

rl
|

nyng L

= x=f(x,u,q) — _/

_ Tflll _
Tritm,1

quni,l Frontshell
(;' in C

Tr6
Triim,6

fjf abs

~e

d’luas,rad ;urf

_Tmani,6_ dz

Jloss,conv

Vel
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Setting Up the MPC

Differential equations from energy balance

(1) C.Iin - éIloss,rad - éIloss,conv - éIabs =0

dTr . .
(2) prVrcr le”;m = Gabs — Yconv

Tr11
. Tr:
dT 1 (Toue = Tin) fitm,1
fl _ . out in
(3) pflVflel W = Qconv — €11 n,n, I Tm‘ani
X = :
. . Tri6
= x=fxuq) Tritm,6
Tmam6

Static nonlinear equations

af lar . .
Tfl,max = ox a_q (qmax - qmean) + Tfl,mean

Tfilm(z) = 91(qin(2), Tfl_max(z): m)

Receiver length %
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Setting Up the MPC

— Cost function

N N
Jmin [ =X e = Toue 15, + s C 1) G, + 11 sicC 1K) g, + X
0 ...U,Nu

So '"SNZ

* Sample time in prediction T, =5 Sek

"+ Prediction horizon N,= 36

e Control Horizon N,=10

s.t. x(k +1) = F(x(k), q(z k), u(k)),

— 0,2 Upmax < Au < 0,2 Uy
0,2Ungy S U< 1,1 Upgy

s, = lsf ilml Trim — Srum < Trumtimit
Safd .
“ Qaps — Safd = afd
Sk >0

| 2 36-5 Sek = 3 Min

e Calculation time: 1.5 sec

Past Future Wilm,max(' k) Ttitm,1imit = 600 °C
r =565°C
/\// u(- 1) TT}QS(
; | | : 1 | | T I
k  k+l k + N, k + N, vt
Prediction -
Horizon

SFERA-III Summer School “Smart CSP: How Smart Tools, Devices, and Software

Rudolf Popp can help improve the Design and Operation of Concentrating Solar Power Technologies”

16



Results
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Results

32 test scenarios defined

* Cloud passage within 1 hour

* 2 branches seperatly

» Wind speed inversion after 30 min

heliostat field

Cloud Coverage Rate (CCR)

* 30%
* 60%
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Results

32 Scenarios defined
* Cloud passage within 1 hour
e 2 branches considered

* Wind speed inversion after 30 min

Cloud coverage (CCR)
° 30%

° 60%

Day time

* 9am

* 12 pm

Wind speed and direction
* 5m/s, 10 m/s
* N,S,WE

Rudolf Popp

1ew/m>  Wind speed: 5 m/s
06 T T T T T
N ]
051 /
\ /
;o
\ /
04 —— S/
= ~ ™ \/V‘“"\ S/
> \ hS A
Q. \‘\* \\ A
S o3t v \ / Jad
é k N \M\Jf’ ,.\f'/’
= R
: 02r S "-—\./’/
©
0
= o1}
BranchA
BranchB
0 . . . . . . ,
0 500 1000 1500 2000 2500 3000 3500

wew/m*  Wind speed: 10 m/s
06 : . | | |
o5 —

g oy N S /./

E 03+ \\ % \ \L /\ /

: m\{ﬂ /‘ILV} S v P"w‘ \“A

S ot ”\,V,—" WaRY,

k)
7l BranchA

BranchB

0

500 1000 1500 2000 2500 3000 3500

Higher wind speeds lead to a more transient flux input
» Greater challenge for the controller
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RENS

Outlet temperature mass flow Outlet temperature mass flow
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time (s) time (s) time (s) time (s)
Outlet temperature: Outlet temperature:
* Control deviation (RMSE) = 20.1 K * Control deviation (RMSE) =22.7 K
Film temperature Film temperature
* Max. value 597 °C * Max. value 627 °C
* No limit violation * Several and critical limit violations
Absorbed flux density: Absorbed flux density:
* No AFD violation * 60 % violation of AFD
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MPC PID

Thermal efficiency

85,97 % 85,96 %

Mean control deviation (rmse)

15,3 K 27,4K

violations of film temperature limits

Average of max violations 0,32 K
Cases: > 16 K (critical violation) 0%
0-16K 21 % 12 %
No violation 79 % 0%
violations of AFD
Average of max violations 1,5 % 28 %
0-3% 42 % 0%
No violation 58 % 21 %

Rudolf Popp
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 The Model Predictive Control can provide a safe operation without the
necessity to defocus heliostats

* The conventional control approach does not explicitly comply with the

operation constraints and provides poor safety performance. It needs further
heuristics that are difficult to adjust to work properly.

* The tracking behavior of the outlet temperature is worse than with MPC.
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Thank you for your attention!
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