SFERA-III Solar Facilities for the European Research Area

Solar Facilities for the European Research Area

"Model predictive control for molten salt solar tower receivers" *Rudolf Popp, Institute of Automatic Control*

NETWORKING

Summer School: "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies" - WP1 Capacity building and training activities - Cologne, Germany, September 14th-15th 2023

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

- Introduction
 - What is Model Predictive Control (MPC): Example
 - Why applying MPC to Molten Salt Receivers
- Controlling the Molten Salt Receiver
 - Conventional Control
 - MPC Control Structure
- Setting Up the MPC
 - Model
 - Cost Function
- Results
 - Comparison of MPC with Conventional Control

Introduction

Introduction What is Model Predictive Control

Example: Steering a vehicle

- Goal:
 - Find and track a lane
 - Avoid obstacles

- PID-Control

- The PID controller only looks at whether it is currently in the lane
- Purely reactive behavior

- Model Predictive Control

- MPC can predict what the future deviation will be
- Predictive behavior

Introduction What is Model Predictive Control

- Example: Steering a vehicle
- **Prediction model:** How does the vehicle move if the steering wheel is operated?
- **Constraints:** maximum steering wheel angle (radius of curvature), stay on the road
- **Disturbances**: obstacles on the street
- Reference value: desired track, lane
- Cost function: reach the destination in minimal distance

• Predictive behavior

Introduction Why Applying MPC to Molten Salt Receivers

- Control variables:
 - $T_{out,1}, T_{out,2}$
 - Set point temperature: 565 °C
- Input variables
 - Manipulated variable: Mass flows \dot{m}_1 and \dot{m}_2
 - Measurable disturbance: Distribution of solar flux density on the receiver $\dot{q}(z)$
- Constraints:
 - Mass flow, salt temperatures, absorbed flux density

- Slow dynamics
 - Settling time ~ 150 s 500 s
- Constraints
 - Qualities, to be restricted, not measurable
 - Limits can be exceeded dynamically at different locations.

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Introduction Why Applying MPC to Molten Salt Receivers

Introduction Why Applying MPC to Molten Salt Receivers

Receiver length z/L

Temperature limits	Salt	Film
transient (max. 5 min)	602 °C	616 °C
steady	580 °C	600 °C

- Avoid mechanical stress due to high temperature gradients
- Allowable flux density (AFD): $f(T_{fl}, \dot{m})$ [Vant-Hull 2002]
- Challenge: Estimate both the AFD as a limit and the absorbed flux density correctly with the internal model

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies"

1

Controlling the Molten Salt Receiver

Controlling the Molten Salt Receiver Conventional Control

- **Conventional Control:** PID + Feed Forward control
 - FF: Designed to keep set point temperature at clear sky condition
- Strategy to avoid violations of temperature limits

Rudolf Popp

- Cloud Standby (CSP) if
 T_{rec,out} < 510 °C
 Feedback control is deactivated
- If salt temperature limits are violated, some heliostats are defocused

Controlling the Molten Salt Receiver MPC Control Structure

- Model: Prediction of system behaviour
- **Observer**: Calculate the full system state as starting point for the prediction
- **Optimization** of the control variable considering prediction and constraints

Controlling the Molten Salt Receiver MPC Control Structure

Continuous state space model

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}\left(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{q}(t)\right)$

 $\boldsymbol{y}(t) = \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{q}(t))$

Discretize equations in time, by integrating the differential equation

 $\boldsymbol{x}(k+1) = \boldsymbol{F}(\boldsymbol{x}(k), \boldsymbol{u}(k), \boldsymbol{q}(k))$

 $\mathbf{y}(k) = \mathbf{g}(\mathbf{x}(k), \mathbf{u}(k), \mathbf{q}(k))$

Predict the future system behavior

for $i \coloneqq 0$ to N_u

x (k+1) = f(x(k), u(k), q(k))y (k+1) = g(x(k), u(k))

 $J = \|\Delta \boldsymbol{u}(\cdot |k)\|_{R}^{2}$ $\boldsymbol{u}_{1b} \leq \boldsymbol{u}(k) \leq \boldsymbol{u}_{ub}$ end

Reference Value Trajectory

 $r(\cdot|k)$

Controlled Value Trajectory $y(\cdot|k)$

 $k + N_2$ Sampling Index

end

Setting Up the MPC

Rudolf Popp

Rudolf Popp

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies"

 \dot{m}

• $T_{\rm in}$

dz

Differential equation from energy balance

Setting Up the MPC Model

 $\bullet \bullet \bullet$

Setting Up the MPC Model

Rudolf Popp

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Setting Up the MPC Cost function

- Cost function

$$\min_{\substack{u_0 \dots u_{N_u} \\ s_0 \dots s_{N_2}}} J = \sum_{k=0}^{N_2} \| r_k - T_{out} \|_{Q_y}^2 + \| s_k(\cdot |k) \|_{Q_f}^2 + \| s_k(\cdot |k) \|_{Q_1} + \sum_{k=0}^{N_u} \| \Delta u(\cdot |k) \|_{R}^2$$

Sample time in prediction $T_s = 5 Sek$ Prediction horizon $N_2 = 36$ \triangleq 36 · 5 Sek = 3 Min Control Horizon N_u =10 ٠ Calculation time: 1.5 sec Future $T_{film,max}(\cdot | k)$ $T_{film,limit} = 600 \,^{\circ}C$ $r = 565 \,^{\circ}C$ $T_{out}($ $u(\cdot|k)$ $\cdot |k)$ *k+1* t/T $k + N_u$ $k + N_{2}$ Prediction Horizon

s.t.
$$x(k+1) = F(x(k), \dot{q}(z,k), u(k)),$$
$$-0.2 u_{max} \le \Delta u \le 0.2 u_{max}$$
$$0.2 u_{max} \le u \le 1.1 u_{max}$$
$$= \begin{bmatrix} S_{film} \\ S_{afd} \end{bmatrix} \qquad \begin{array}{l} T_{film} - S_{film} \le T_{film, limit} \\ \dot{q}_{abs} - S_{afd} \le afd \\ S_k \ge 0 \end{array}$$

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Past

Rudolf Popp

 \boldsymbol{S}_k

Results

Results Validation of the MPC with test scenarios

heliostat field

32 test scenarios defined

- Cloud passage within 1 hour
- 2 branches seperatly
- Wind speed inversion after 30 min

Cloud Coverage Rate (CCR)

- 30 %
- 60 %

CCR 60 %

cold vessel

BranchA

BranchB

3500

3000

2500

Rudolf Popp

Results Test scenarios

32 Scenarios defined

- Cloud passage within 1 hour
- 2 branches considered
- Wind speed inversion after 30 min

Cloud coverage (CCR)

- 30 %
- 60 %

Day time

- 9 am
- 12 pm

Wind speed and direction

- 5 m/s, 10 m/s
- N, S, W, E

Higher wind speeds lead to a more transient flux input

Greater challenge for the controller

Results Test case: CCR 30 %, Vel_N = - 10 m/s

MPC

800 600 % 9 400 200 m flow 500 2500 3000 3500 1000 1500 2000 exceed film temperature limit 30 - T max - - - - 16 K 20 ¥ 500 1000 1500 2000 2500 3000 3500 exceed afd 0.5 500 1000 1500 2000 2500 3000 3500 time (s)

mass flow

Outlet temperature:

• Control deviation (RMSE) = 20.1 K

Film temperature

- Max. value 597 °C
- No limit violation

Absorbed flux density:

No AFD violation

Outlet temperature:

• Control deviation (RMSE) = 22.7 K

Film temperature

- Max. value 627 °C
- Several and critical limit violations

Absorbed flux density:

• 60 % violation of AFD

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies"

Rudolf Popp

Results Evaluation on 24 validation cases

	MPC	PID	
Thermal efficiency	85,97 %	85,96 %	
Mean control deviation (rmse)	15,3 K	27,4 K	
violations of film temperature limits			
Average of max violations	0,32 K	41 K	
Cases: > 16 K (critical violation)	0 %	88 %	
0 - 16 K	21 %	12 %	
No violation	79 %	0 %	
violations of AFD			
Average of max violations	1,5 %	28 %	
Cases : > 5 %	0 %	79 %	
0-3 %	42 %	0 %	
No violation	58 %	21 %	

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

can help improve the Design and Operation of Concentrating Solar Power Technologies"

• The Model Predictive Control can provide a safe operation without the necessity to defocus heliostats

- The conventional control approach does not explicitly comply with the operation constraints and provides poor safety performance. It needs further heuristics that are difficult to adjust to work properly.
- The tracking behavior of the outlet temperature is worse than with MPC.

Thank you for your attention!

Rudolf Popp