

Short-term Training for technical staff and scientists

Evaluation of mirror solar reflectance versus incidence and acceptance angle

Location: Italy – ENEA-Casaccia (Rome)

Date: June 12-13, 2023

Modality: Face-to-face

- Target group:The course is designed for engineers, researchers and
representatives from European CSP industry and
companies who want to be trained on the latest procedure
recommended by SolarPACES reflectance guidelines.
- **Objective:** This course focuses on the equivalent model algorithm successfully used for modelling solar reflectance behaviour versus incidence and acceptance angle. The required input data, measured at near-normal incidence, are:

1) hemispherical spectral reflectance in the solar range

2) experimental values of single-wavelength near-specular reflectance (or conic reflectance) at different acceptance angles.

Trainers: ENEA scientists

The training will includes visits, procedures, standards and best practices theoretical and experimental 'hands-on' experience and cover the following topics:

- Mirrors in CSP and measurement of the concerning reflectance
- Dual beam spectrophotometers and best practice to obtain reliable measurements of hemispherical reflectance spectra
- Review of Standard Solar spectrum; Solar and UV weighting
- Theory of the Equivalent Model for Solar Mirrors
- Review of the proposed instruments for measuring near-specular (conic) reflectance
- Theory and practice on the Solar Mirror Qualification set-up version 2
- Characterization exercises on several commercial mirrors

Agenda

First day

08:30 - 09:15	Arrival-Registration and delivery of documentation
09:15 – 09:30	Training overview and goals
09:30 – 09:45	Mirrors in CSP: approaching to the problem of reflectance measurement
09:45 – 10:30	Hemispherical reflectance measurement: dual beam commercial spectrophotometers, integrating sphere, reference mirrors, errors, and best practice
10:30 – 10:45	- Coffee break -
10:45 – 12:00	Near-specular solar reflectance, the two ways to get it: direct measurement or modeling of single-wavelength experimental data. Theory of the equivalent model for solar mirrors.
12:00 – 13:00	- Lunch break -
13:00 – 14:30	Visit to PCS facility, OMSoP dish, and Perkin Elmer Lambda 950 spectrophotometer
14:30 – 15:30	Review of the proposed instruments by the SolarPACES expert group
15:30 – 16:30	SolarPACES reflectance guidelines

Agenda

Second day

09:00 - 09:30	Open discussion on the first day
09:30 – 10:30	Short training on SMQ2 set-up
10:30 – 10:45	- Coffee break -
10:45 – 12:00	Theory and practice on the processing software SMQexpo
12:00 – 13:00	- Lunch break -
13:00 – 14:00	Visit to the solar collector optics laboratory – how to measure mirror 3D shape
14:00 – 15:30	Hand-on experience with SMQ2 on several commercial products
15:30 16:30	Final discussion and feedback on the training

MEETING PLACE & ACCOMMODATION

Training place	ENEA-Casaccia
Address Training Location:	Via Anquillarese 301, Santa Maria di Galeria (Roma), Italy
How to get to the Training place from the airport	 By train (Leonardo Express → MetroA → FL3) By taxi By car for rent
Restaurant place	Launch at ENEA canteen; dinner free
Accommodation	Next to ENEA-Casaccia or in Rome city
Contacts for the Training	Marco Montecchi (ENEA) Tel.: +39 06 3048 3587 E-mail: marco.montecchi@enea_it
Participation confirmation for the Training	SFERA III website : <u>https://sfera3.sollab.eu/events/list/</u>