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Executive Summary 
In this report we outline figures of merit 1 (or performance indicators) for monitoring 

and evaluating the performance of solar fuel production reactors. The work was carried 

out as part of Task 8.2 Protocols for monitoring and evaluating the performance of solar 

reactors.  In order to disseminate the protocols to a wider audience, the contents of 

part A of the report have also been submitted for publication in a special issue of 

Frontiers in Energy titled Advanced Water Splitting Technologies Development: Best 

Practices and Protocols [Bulfin, Miranda & Steinfeld, 2021 submitted]. 

Concentrated solar energy offers a source for renewable high-temperature process 

heat that can be used to efficiently drive endothermic chemical processes, converting 

the entire spectrum of solar radiation into chemical energy. In particular, solar-driven 

thermochemical processes for the production of fuels include reforming of methane 

and other hydrocarbons, gasification of biomass, coal, and other carbonaceous 

feedstock, and metal oxide redox cycles. A notable issue in the development of these 

processes and their associated solar reactors is the lack of consistent reporting 

methods for experimental demonstrations and modelling studies, which complicates 

the benchmarking of the technologies. In this report we formulate dimensionless 

performance indicators based on mass and energy balances of such reacting systems, 

namely: energy efficiency, conversion extent, selectivity, and yield. These are developed 

by reviewing the literature (Part B) and by considering standard chemical engineering 

conventions. Examples are outlined for the processes mentioned above. We then 

provide guidelines for reporting on such reactors and processes and suggest 

performance benchmarking on four key criteria: efficiency, conversion extent, 

selectivity, and performance stability. 

 
1 The terminology of performance indicators is used in this text as opposed to figures of merit. A figure of merit is 
usually a unit less parameter that alone can be used to benchmark a device, and it is usually a combination of several 
performance areas. Given the variety of chemical processes covered it is not reasonable to formulate a single figure of 
merit, so that multiple performance indicators are required. 
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Part A: Performance Indicators 
Concentrated solar power plants have been established for large-scale renewable 

power generation in areas with high direct normal irradiance (DNI). These plants 

convert the entire spectrum of DNI into high-temperature heat, which in turn is used 

by a heat engine to generate electricity. Alternatively, heat can be used to drive 

endothermic chemical processes [Romero & Steinfeld, 2012, Yadav & Banerjee 2016], 

converting solar energy into chemical energy, with the chemical products acting as 

energy carriers. A promising application in this area is the production of solar fuels. 

In particular, syngas – a mixture of H2 and CO − can be produced via a number of 

routes as illustrated in Figure 1, and further processed to drop-in transportation fuels 

such as gasoline and kerosene via established gas-to-liquid technologies. Examples of 

thermochemical processes for solar fuels production include the gasification of 

biomass, coal, and other carbonaceous feedstock [Nzihou et al. 2012, Piatkowski et 

al., 2012], reforming of hydrocarbons [Agrafiotis et al. 2014], and thermochemical 

redox cycles [Romero & Steinfeld, 2012]. The solar reactor for effecting these processes 

is the key component and its performance can be the deciding factor in assessing its 

 

 

Figure 1. Main process routes for the solar thermochemical production of 
syngas − a mixture of H2 and CO that can be further processed to drop-in 
transportation fuels.  
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technical and economic feasibility. Thus, when reporting on the R&D of such reactors 

it is beneficial to follow standard conventions and procedures, so that progress can be 

benchmarked. 

A generic solar thermochemical reactor can be defined as a system with both an energy 

and mass flow input (see Figure 2), with a thermochemical transformation consuming 

energy and converting chemical species. It is convenient in chemical engineering to 

define dimensionless parameters to describe the energy and mass balance, which are 

independent of scale and process and can be used as performance indicators to 

benchmark the system. These are the energy efficiency for the energy balance, and the 

conversion extent, selectivity and yield for the mass balance. In addition, we are also 

interested in the stability of the process, i.e., its performance over time. All of these 

aspects will affect the capital and operating cost of any scaled-up fuel production 

process. In an opinion article in Advanced Science Views, Ozin highlighted the 

importance of reporting all these performance indicators to assess the feasibility of 

renewable fuel production technologies [Ozin 2018], and notes that seldom are all four: 

conversion, selectivity, efficiency and stability, reported on. When they are reported 

on, the definitions of these parameters often vary, in particular for the efficiency, but 

also for standardized chemical process parameters such as selectivity and yield. This 

article aims to tackle these issues by providing clear protocols and definitions of the 

dimensionless parameters that can be used as performance indicators for reporting 

on solar fuel reactors. To do this we propose a standardized efficiency definition and 

outline the already standardized chemical process parameters of conversion extent, 

selectivity and yield. Examples for applying them to the solar thermochemical 

processes shown in Figure 1 are provided. 
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1. Energy efficiency 
Consider a general solar thermochemical reactor as illustrated in Figure 2, which has 

a feedstock input, a product output, energy inputs in the form of heat and auxiliary 

work, and waste heat output. We draw a boundary around this system and treat it as 

our domain. The heat input Q is assumed to be provided by concentrated solar energy, 

either by direct solar irradiation or by using an indirect method of heat transfer from 

a solar receiver via heat transfer media. The waste heat can include radiation, 

conduction, and convection losses, and unrecovered sensible and latent heat in the 

products and materials of construction. The auxiliary work Waux is the additional work 

that is required for the operation of the reactor, for example pumping work to overcome 

pressure drops or to operate at vacuum/high pressures or the energy required to 

separate the inert gas that is consumed during the process. 

 

 

Figure 2. Generic thermochemical reactor with a feedstock, a product stream, 
a heat input, waste heat output and some auxiliary work associated with 
operating the reactor. The heat input is supplied by concentrated solar energy. 

 

The reactor can perform a continuous or a batch process, or a combination of both. 

The energy efficiency is defined as the fraction of the energy input that is available as 

chemical energy in the products. It is expressed as, 

 𝜂𝜂 = 1 − 𝑄𝑄waste
𝐸𝐸total

 (1) 

where 𝐸𝐸total is the total thermal energy supplied to the reactor and 𝑄𝑄waste is the heat 

that leaves the system to the surroundings unused. Evidently,  𝜂𝜂 should always have 
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a value between 0 and 1. Waux is not necessarily an energy consumption taking place 

within the reactor (e.g., pumping work for operating at vacuum pressures), however it 

is work that must be done in order for the reactor to operate. It should therefore be 

accounted for in Etotal. Since Etotal is in the form of heat while Waux is in the form of 

work, we use instead of Waux the equivalent thermal energy input Qaux to an archetype 

heat engine with a heat-to-work efficiency,  

 𝑄𝑄aux = 𝑊𝑊aux
𝜂𝜂heat−to−work

. (2) 

Typically, 𝜂𝜂heat−to−work = 0.4.  The total energy now includes the heat supplied to the 

reactor and the heat converted to auxiliary work, Etotal = Q + Qaux.  

Efficiency is rarely defined explicitly as in Eq. (1) because 𝑄𝑄waste is not usually a term 

that can be directly measured. Let us look at some common efficiency definitions seen 

in the literature and discuss the pros and cons of each. We first consider a definition 

based around the second law of thermodynamics, 

 𝜂𝜂 =
∑ ni𝐺𝐺i
products
𝑖𝑖 −∑ ni𝐺𝐺ifeedstock

𝑖𝑖  
𝐸𝐸total

, (3) 

where G denotes the Gibbs free energy, i.e., the theoretical maximum work that can 

be extracted from the chemicals. Thus, the numerator represents the change in Gibbs 

free energy of the process, which is equivalent to the theoretical maximum work that 

can potentially be performed by the reverse process. This definition was often used in 

the pioneering work of Fletcher on solar-driven processes [Noring and Fletcher 1982]. 

Fletcher also derived a theoretical upper bound for this efficiency, given by: 

 𝜂𝜂max = �1 − 𝜎𝜎𝑇𝑇H
4

𝐼𝐼𝐼𝐼
� �1− 𝑇𝑇L

𝑇𝑇H
�, (4) 

where 𝐼𝐼 is the DNI, 𝐶𝐶 is the solar concentration ratio, 𝑇𝑇H and 𝑇𝑇L  are the temperatures 

of the upper and lower thermal reservoirs of an equivalent heat engine, and σ is the 

Stefan-Boltzmann constant [Fletcher and Moen 1977]. This upper bound results from 

multiplying of the maximum solar absorption efficiency of a perfectly insulated 

blackbody cavity-receiver (taking into account only radiation losses), and the Carnot 

efficiency for the maximum conversion of heat to work. However, one issue with 

equation (3) is that it does not necessarily relate to the fuels energy in a way that is 

obvious to the reader. The energy available in a fuel is usually quantified in terms of 
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its heating value, which leads to an alternative efficiency definition, given by: 

 𝜂𝜂 =
∑ niHHVi
products
𝑖𝑖 −∑ 𝑛𝑛𝑖𝑖HHVifeedstock

𝑖𝑖  
𝐸𝐸total

 (5) 

where HHV denotes the higher heating value. Note that lower heating values (LHV) can 

also be used, as discussed later. The numerator is equivalent to the enthalpy change 

of the reaction. This efficiency definition has a direct relation to the fuel properties and 

has been applied in publications on both natural gas reforming and biomass 

gasification [Jin Jian et al. 2018, Z'Graggen & Steinfeld 2008]. 

It is important to note that Eq. (5) is a heat-to-heat efficiency and it can have a larger 

value than the heat-to-work efficiency given by Eq. (3). It is bounded by only the first 

bracketed term of Eq. (4), which is the maximum absorption efficiency. Thus, while 

the second law of thermodynamics places a limit on η according to Eq. (3), only the 

first law of thermodynamics places a limit on η according to Eq. (5). 

Finally, the heating value of the feedstock can be included in 𝐸𝐸total as an additional 

input of thermal energy. For H2O and CO2 splitting cycles, the corresponding heating 

values are zero. But this is not the case for example for the gasification of biomass, or 

for the reforming of methane and other hydrocarbons [ Piatkowski et al., 2012, 

Muroyama et al. 2018, Müller et al. 2017]. The efficiency is then defined as, 

 𝜂𝜂 =
∑ niHHVi
products
𝑖𝑖

𝐸𝐸total
,    (6) 

where the total energy now includes the solar heat supplied to the reactor, the 

equivalent heat for auxiliary work, and the heating value in the feedstock, Etotal = Q + 

Qaux + ∑ �̇�𝑛iHHVireactants
𝑖𝑖 . Equation (6) is equivalent to equation (5) if the feedstock itself 

has no heating value (e.g. H2O or CO2). This definition is also equivalent to equation 

(1), in that it tracks the waste heat released in the process as the difference between 

the denominator and numerator. The heat losses can be radiation, convection, and 

conduction losses, losses in sensible heat from the products, and waste heat from the 

generation of Waux (see Eq. (2)). Thus, Eq. (6) can be generally applied to any solar 

thermochemical fuel production process described in Figure 1. 

We should also consider the definitions that other authors have used in the literature, 

as past work does set some precedent in choosing a definition. A selection of 

publications with explicitly defined efficiencies are shown in Table 1. 
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Table 1. Efficiency definitions in the literature, with the process type, the 
efficiency equation used, whether they use LHV or HHV, and if they include 
auxiliary work directly or convert it to heat. 

Reference Process Equatio
n* 

LHV/H
HV 

𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂
/𝑸𝑸𝒂𝒂𝒂𝒂𝒂𝒂 

Bhosale et. al. 2017 Thermochemical 
cycle 

(5) or (6) HHV Q 

Bhosale 2019 Thermochemical 
cycle 

(5) or (6) HHV Q 

Binnoti et. al. 2017 Thermochemical 
cycle 

(5) or (6) HHV Q 

Bulfin et. al. 2016 Thermochemical 
cycle 

(5) or (6) HHV Q 

Chuayboon et. al. 2019 
July 

Gasification (6) LHV - 

Chuayboon et. al. 2019 Reforming other LHV - 

Falter 2017 Thermochemical 
cycle 

(5) or (6) HHV Q 

Falter et. al. 2017 Thermochemical 
cycle 

(5) or (6) HHV Q 

Fletcher & Moen 1977 Thermolysis (3) - - 

Gokon et. al. 2014 Gasification (5) - - 

Hathaway et. al. 2017 Gasification (6) LHV - 

Hathaway et. al. 2016 Thermochemical 
cycle 

(5) or (6) HHV Q 

Jin et. al. 2015 Reforming (5) - - 

Koepf et. al. 2016 Thermochemical 
cycle 

(5) or (6) - W 

Kong et. al. 2016 Reforming (5) HHV - 

Kong et. al. 2018 Thermochemical 
cycle 

(5) or (6) HHV Q 

Lapp et. al. 2012 Thermochemical 
cycle 

(5) or (6) HHV Q 

Marxer et. al. 2017 Thermochemical 
cycle 

(5) or (6) HHV Q 

Müller et. al. 2017 Gasification (6) LHV - 

Müller et. al. 2018 Gasification (6) LHV - 

Muroyama et. al. 2018 Gasification (6) LHV - 
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Reference Process Equatio
n* 

LHV/H
HV 

𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂
/𝑸𝑸𝒂𝒂𝒂𝒂𝒂𝒂 

Palumbo et. al. 2015 Reforming/Gasifica
tion 

(6) LHV - 

Piatowski et. al. 2011 Gasification (6) LHV - 

Yuan et. al. 2015 Thermochemical 
cycle 

(5) or (6) HHV W 

Z'Graggen et. al. 2006 Gasification (5) - - 

Z'Graggen et. al. 2008 Gasification (5) - - 

Zheng et. al. 2015 Reforming (5) HHV - 

Zhu et. al. 2016 Membrane reactor other HHV - 

Zoller et. al. 2019 Thermochemical 
cycle 

(5) or (6) HHV Q 

* (5) or (6) indicates that the feedstock has a heating value of zero, so that the definitions are 

equivalent. 

As can be seen from Table 1, Eq. (6) is the most frequently occurring definition among 

this sample of literature. It is also the most general formulae, and it can be applied to 

a reactor or an entire process chain. Consider for example a conventional oil refinery 

where some of the feed is combusted to provide the heat required for the plant. In this 

case we cannot apply equation (3) or (5) as they will give a negative efficiency, but 

equation (6) would be a suitable efficiency definition. Similarly, if we consider a 

complete solar fuel production process consisting of the endothermic solar gasification 

of biomass followed by exothermic Fischer-Tropsch synthesis and subsequent refining 

of the hydrocarbons, the end product will have less heating value than the original 

biomass. Again, we cannot apply equation (3) or (5) as they would give negative values. 

Therefore, as the most commonly applied general formula, Eq. (6) is the recommended 

efficiency definition for future studies. 

Other efficiency definitions can be found in the literature, some of which are difficult 

to interpret and should be avoided. For example, subtracting the auxiliary work term 

from the numerator rather than including it in the denominator [Zhu et. al. 2016], 

 η =
HHVproducts−𝑊𝑊
HHVreactants+𝑄𝑄

 , (7) 

as this leads to an equation which can easily have a negative value. Another variation 

encountered is the inclusion of the conversion extent 𝑋𝑋 in the denominator of the 
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efficiency definition [Chuayboon et al. 2019] 

 η =
 HHVproducts

𝑋𝑋 HHVreactants+𝑄𝑄+𝑄𝑄aux
 . (8) 

which mixes up the benchmarks for mass balance with that of the energy balance. 

Higher heating value (HHV) vs. lower heating value (LHV) − Some sources use LHV 

instead of HHV (Table 1). If there is hydrogen or hydrocarbons in the products this will 

lead to lower efficiency values, and one could argue that HHV is used due to positive 

bias. HHV does indeed occur more frequently in the literature, and we are also 

suggesting its use here as it offers a strict upper-bound for the useful energy in the 

fuel in all utilization cases. 
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2. Conversion extent, selectivity, 
and yield 
These performance indicators are based on the mass balance and are used to keep 

track of the chemical reactions taking place, and they are, along with energy efficiency, 

the most important metrics for assessing the performance of chemical reactors. The 

conversion extent monitors how much of the feedstock supplied undergoes a chemical 

change within the reactor, while the selectivity gauges the extent of unwanted side 

reactions. The yield is the product of conversion and selectivity, and it gives the 

amount of the desired product formed relative to the stoichiometric maximum product 

formation, and thus provides information about the purity of the fuel produced. This 

means that reporting conversion extent and selectivity (or yield) gives the information 

needed to benchmark the system, while only reporting yield leaves ambiguity about 

the selectivity and conversion extent. Together, these mass balance parameters have 

very useful implications for reactor design, including relating the reactor free volume 

and flow rates to production rates. These metrics can be used to rule out processes as 

unfeasible for large scale industrial production [Lange 2016]. Although they can be 

considered the nuts and bolts of chemical engineering research, they are often omitted 

in solar reactor studies. 

 

 

Figure 3. A continuous-flow thermochemical reactor with a molar feed rate of 
�̇�𝒏𝐀𝐀,𝟎𝟎, and a product stream with outflows �̇�𝒏𝐀𝐀,𝒇𝒇 , �̇�𝒏𝐁𝐁,𝒇𝒇 and �̇�𝒏𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨. 

 

Let’s first define these indicators for a generic chemical reactor and then give examples 

for the solar fuel production processes discussed. We follow the definitions formulated 

in the seminal chemical reactor engineering textbooks by Levenspiel and Scott 

[Levenspiel 2001, Scott 2006]. The conversion extent is generally formulated in terms 
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of a limiting reactant. The limiting reactant is the reactant fed to the reactor which can 

be completely consumed according to the chemical reaction stoichiometry and input 

flow rates. For a trivial chemical process, such as  

 A → B, (9) 

we have only one feedstock so that species A is the limiting reactant, and the desired 

product is B. A chemical reactor for this process is illustrated in Figure 3. 

The conversion extent for this process can be defined as the relative change in the 

number of moles of the limiting reactant, 

 𝑋𝑋A = 1 −
�̇�𝑛A,𝑓𝑓

�̇�𝑛A,0
. (10) 

For a batch reactor we can use the same formulae but with the number of initial and 

final moles, instead of molar flow rates. The performance equation of a chemical reactor 

gives the relation between the free volume, species flow rates and the conversion extent 

[Levenspiel 2001]. If for example we can only achieve a low conversion extent of say 

10 %, and we assume perfect selectivity, then we must have a feedstock flow rate 

which is 10 times higher than the desired production rate, and a large volume reactor 

to accommodate the flow, which has obvious implications for the cost and practical 

feasibility of a process. 

As well as the desired reaction there can also be undesired reactions, for example, 

 A + B → C, (11) 

where A is the reactant, B is the desired product, and C is an undesired product. The 

selectivity of the reactor towards species B is defined as the production rate of the 

desired product B relative to consumption rate of the feedstock A, 

 𝑆𝑆B =
�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0−�̇�𝑛A,𝑓𝑓
 . (12) 

If this side reaction does not proceed at all we would have �̇�𝑛B,𝑓𝑓 = �̇�𝑛A,0 − �̇�𝑛A,𝑓𝑓, and a 

selectivity of 1. The yield is the amount of desired product formed relative to the 

maximum amount of desired product that can be formed, i.e., it is the product of 

conversion extent and selectivity, 
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 𝑌𝑌B = 𝑋𝑋A𝑆𝑆B =  
�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0
   . (13) 

Note then that reporting conversion extent, selectivity, and feed rates offers a complete 

description of the chemical transformation in the reactor. However, if the system does 

not have an ideal selectivity of 𝑆𝑆 = 1, it is also recommended to report the yield 

separately. 

Another point worth noting is that the selectivity and yield need to be adjusted by the 

relative stoichiometry of the product to the limiting reactant. For example, for the 

reaction 𝐴𝐴 → 2𝐵𝐵, the selectivity would be given by 𝑆𝑆B = 1
2

�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0−�̇�𝑛A,𝑓𝑓
, where the factor of one 

half accounts for the 2 moles of B formed for every one mole of A reacted. 

When reporting on the mass balance for reactor demonstrations it is recommend to 

report, 

- The feedstock flow rates in moles/sec (or kg/sec for biomass). 

- The conversion extent of the feedstock in terms of the limiting reactant. 

- The selectivity towards the desired product, and the yield. 

In trivial cases where the selectivity can be assumed to have a value of one, then the 

conversion extent and yield will be equal. In such cases this should be clearly stated 

in the results. 
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3. Stability 
The reactor’s performance stability can be reported using the same mass and energy 

balance performance indicators described above, by giving their values as a function 

of time (or cycle # for cyclic processes). In other words, the efficiency η given by Eq. (6), 

conversion extent 𝑋𝑋𝑖𝑖 given by Eq. (10), the selectivity 𝑆𝑆𝑖𝑖 given by Eq. (12), and the yield 

given by Eq. (13), should all be monitored over time to gauge the stability of the 

performance. Other stability issues such as degradation or complete failure of 

components are much more difficult to report in a consistent way, as there are no 

scalable measurements of such faults that can be broadly applied. We therefore 

restrict our recommendations to recording the performance indicators over time. 
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4. Examples of the performance 
indicators 
Here we outline the performance indicators for some example processes that have been 

investigated in the literature, namely solar reforming, two step thermochemical cycles 

and solar biomass gasification. 

Solar methane reforming − Methane can be converted to syngas by reacting it with 

steam at high temperatures via the endothermic reforming reaction, 

 CH4 + H2O → CO + 3H2, (14) 

The heat for this reaction can be supplied by concentrated solar energy [Agrafiotis et 

al. 2014]. This can be performed with a continuous flow reactor as illustrated Figure 

4. There can be numerous side reactions such as the reverse water-gas shift, 

 CO + H2O → CO2 + H2. (15) 

 

 

Figure 4. A thermochemical reactor for the steam reforming of methane. The 
heat input is supplied by concentrated solar energy. 

 

For this process, we define the efficiency as (Eq. (6)); 

 𝜂𝜂 =
∑ �̇�𝑛iHHVi
products
𝑖𝑖

�̇�𝑛CH4,0HHVCH4+�̇�𝑄
 . (16) 

where the sum in the numerator is over the species flow rates in the products times 

their HHVs. To avoid coking, steam is used in excess with �̇�𝑛H2O ≈ 2�̇�𝑛CH4 and methane 
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as the limiting reactant, with conversion extent given by,  

 𝑋𝑋CH4 = 1−
�̇�𝑛CH4,𝑓𝑓

�̇�𝑛CH4,0
 . (17) 

CO2 can also be in the feedstock in mixed and dry reforming processes [Bulfin et al. 

2021], allowing for more CO production, which can be desirable for gas-to-liquids 

conversion. An important parameter is then the selectivity towards CO, given by: 

 SCO =
�̇�𝑛CO,𝑓𝑓

�̇�𝑛CH4,0−�̇�𝑛CH4,𝑓𝑓
  . (18) 

Solid phase carbon is an unwanted product which can form due to the Boudouard 

reaction or methane cracking. If present, this can be gauged using the carbon yield 

[Bulfin et al. 2021], 

 YC = �̇�𝑛C
�̇�𝑛CH4,0

  , (19) 

but ideally it should be zero. Note the formulae given can be re-arranged to be in terms 

of feed rate, and mole fractions in the product stream, as required by the type of 

measurements taken in the experiment. However, it should be checked that definitions 

used are equivalent to the standard versions given here.  

Thermochemical redox cycles − Two-step metal oxide redox cycles can be used to split 

H2O and CO2, producing H2 and CO [Romero & Steinfeld, 2012, Bulfin et al. 2017]. A 

metal oxide first undergoes reduction at high temperature and low oxygen partial 

pressures, 

 𝑀𝑀𝑀𝑀ox → 𝑀𝑀𝑀𝑀red + δ
2

O2 (20) 

and is then reacted at lower temperature with H2O or CO2 to form H2 and CO,  

 𝑀𝑀𝑀𝑀red + CO2 → 𝑀𝑀𝑀𝑀ox + CO (21)a 

 𝑀𝑀𝑀𝑀red + H2O → 𝑀𝑀𝑀𝑀ox + H2 (22)b 

 

Both redox reactions can be performed in the same fixed bed reactor but at different 

times so that the reactor undergoes a cycle [Hathaway et al. 2016, Haeussler et al. 

2020, Marxer et al. 2017]. Alternatively, it could be operated continuously using a 
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particle transport reactor [Ermanoski et al. 2013, Singh et al. 2017, Welte et al.2016]. 

The process is illustrated in Figure 5, where it is important to note that reduction and 

oxidation are either taking place at different times, or in separate reaction chambers. 

 

 

Figure 5. A thermochemical reactor for the redox splitting of CO2. The heat 
input is supplied by concentrated solar energy. 

 

In the fixed bed case, the system parameters; temperature, pressure, input power, 

conversion extent, auxiliary work etc., are varying in time. We therefore need to take 

integrals over an entire cycle to get the desired performance parameters. For CO2-

splitting, we define the efficiency as, 

 𝜂𝜂 =
HHVCO  ∫ �̇�𝑛CO(𝑡𝑡) d𝑡𝑡

𝑡𝑡cycle
0

∫ �̇�𝑄(t)+�̇�𝑄aux(𝑡𝑡)  d𝑡𝑡
𝑡𝑡cycle
0

 . (23) 

Auxiliary work may include vacuum pumping during reduction and the production of 

sweep inert gas. This definition is the same for water splitting, where CO is replaced 

by H2. In this case we only have one feedstock, so that the conversion extent is given 

by: 

 𝑋𝑋CO2 = 1 −
∫ �̇�𝑛CO2,𝑓𝑓 d𝑡𝑡
𝑡𝑡cycle
0

∫ �̇�𝑛CO2,0 d𝑡𝑡
𝑡𝑡cycle
0

 . (24) 

The selectivity towards CO is given by: 

 SCO =
∫ �̇�𝑛CO,𝑓𝑓 d𝑡𝑡
𝑡𝑡cycle
0

∫ �̇�𝑛CO2,0−�̇�𝑛CO2,𝑓𝑓 d𝑡𝑡
𝑡𝑡cycle
0

 . (25) 
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The yield is given by 𝑌𝑌CO = 𝑋𝑋CO2𝑆𝑆CO. Alternative formulae which are equivalent to these 

definitions are possible.  

The literature on thermochemical redox cycles is perhaps the most problematic in 

terms of reporting standards due to the more complex nature of the cyclic process. 

There are few articles in the literature which address all the performance indicators 

described here, with the work of Marxer et al. a notable exception [Marxer et al. 2017]. 

A few studies report the yield as the moles of H2 or CO produced per gram of the cycled 

redox material [Agrafiotis et al. 2005, Hathaway et al. 2016, Haeussler et al. 2020], 

instead of the dimensionless parameter defined here. This amount of fuel produced 

relative to the redox material is indeed important, and it provides additional 

information for scaling up the process, but it should not be referred to as the yield. Of 

primary importance in the mass balance is to report the conversion extent of the 

oxidant feedstock and the selectivity to the desired product as defined here. 

An interesting example that emphasizes the importance of these performance 

indicators is that of isothermal redox cycles. In this case both redox steps are 

conducted at the same temperature by performing a pressure swing. Studies have 

focused on the energy efficiency [Ermanoski et al. 2014] and experimental 

demonstrations of the process [Hathaway et al. 2016, Hoskins et al. 2019, Muhich et 

al. 2013]. The conversion extent in the demonstrations is typically not reported, but it 

is known to be thermodynamically limited to low values on the order of 𝑋𝑋 ≈ 0.01, at the 

operating conditions considered [Bulfin et al. 2016, Ermanoski et al. 2014]. A low 

conversion extent has practical implications on the scale-up because of the large mass 

flow rates of H2O or CO2 required per mol of redox material. This, in turn, leads to 

larger reactors and increased capital cost. Classical chemical reactor engineering texts 

put a large emphasis on the conversion extent and yield [Levenspiel 2001], which 

highlights the importance of using both the energy and mass balance to benchmark 

these systems. 

Solar Biomass Gasification − Biomass, coal, or carbonaceous materials can be reacted 

with steam at high temperatures to produce syngas, as illustrated in Figure 6 

[Piatkowski et al., 2012]. Since biomass does not have a simple chemical composition, 

the mass balance is more complex than the previous examples. Proximate and 

ultimate analysis are required to determine the chemical breakdown of the biomass 

[Müller et al. 2018, Muroyama et al. 2018]. 
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Figure 6. A reactor for the gasification of biomass. The high-temperature heat 
input is supplied by concentrated solar energy. 

 

Biomass gasification is a combination of many independent reactions with the net 

reaction summarised by the formula, 

 CnHmOk + yH2O → 𝑥𝑥1CO + 𝑥𝑥2CO2 + 𝑥𝑥3H2 + 𝑥𝑥4CH4 + other gases + residue, (26) 

where CnHmOk represents biomass. The biomass geneally also contains sulphur and 

nitrogen impurities on the order of 1 % by mass. The efficiency can be expressed as 

 𝜂𝜂 =
∑ �̇�𝑚iHHVi
gas−products
𝑖𝑖

�̇�𝑚biomass HHVbiomass+�̇�𝑄
 . (27) 

where we only count the heating value of the gasified products, as the residue is an 

ash like by-product and not a fuel. Note that the HHV are per unit mass and not per 

mole as in other formulae, which is due to the fact that the feed does not have a well-

defined stoichiometric chemical formula. In this case an upgrade factor is also often 

reported, which is the change in the heating value of the products relative to the 

feedstock. 

 𝑈𝑈 =
∑ �̇�𝑚iHHVi
gas−products
𝑖𝑖

�̇�𝑚biomass HHVbiomass
 . (28) 

The value of U depends on the type of feedstock and the syngas yield. This value can 

offer non-redundant information on the energy balance when reported together with 

the efficiency. 

For the conversion extent, the species which is not fully converted by the gasification 

is carbon, and so the conversion extent is usually defined in terms of the carbon 

conversion extent [Müller et al. 2018] 
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 𝑋𝑋C = 1 − �̇�𝑚C−residue
�̇�𝑚C,0

 . (29) 

where �̇�𝑚C,0 is the mass flow rate of carbon in the biomass feed (determined by ultimate 

analysis), and �̇�𝑚C−residue is the mass of carbon in the residue (the unreacted carbon), 

which can be made up of tar and ash. The carbon to syngas yield can be expressed 

using molar flow rates of carbon containing species in the gas stream, 

 𝑌𝑌syngas =
∑ 𝜈𝜈𝑖𝑖,𝐶𝐶�̇�𝑛i,gas
gases
𝑖𝑖

�̇�𝑛C,0
=

�̇�𝑛CO+�̇�𝑛CO2+�̇�𝑛CH4+2�̇�𝑛C2H6+⋯
�̇�𝑛C,0

 . (30) 

where 𝜈𝜈𝑖𝑖,𝐼𝐼 is the stoichiometric number of carbons in the gas species. Often this sum 

is only performed for CO, CO2, and CH4, which does offer a good approximation 

especially at high temperatures where other carbon containing gases are in very low 

concentration. Given the large number of reactions present there are a number of 

different selectivities that could be discussed. For downstream gas-to-liquid processes, 

CO may be favoured over CO2 and CH4, in which case the selectivity towards CO can 

be defined as, 

 𝑆𝑆CO = �̇�𝑛CO
∑ 𝜈𝜈𝑖𝑖,𝐶𝐶�̇�𝑛i,gas
gases
𝑖𝑖

= �̇�𝑛CO
�̇�𝑛CO+�̇�𝑛CO2+�̇�𝑛CH4

 . (31) 
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5. Summary of reporting 
protocols  
The dimensioned parameters required to describe the reactor system are: 

1. The reactor volume and free volume.  

2. Mass loading of any catalyst or cycled redox material. 

3. The operating conditions of the reactor (e.g., temperature, pressure, etc.). 

4. The molar/mass flow rates of feedstock into the reactor. 

5. The total heat supply to the reactor, Q (e.g., solar heat, etc.) 

6. Auxiliary work demands, Waux, (e.g., pumping work, inert gas production, etc.) 

This information should be sufficient for the study to be reproduced or modelled by 

other laboratories. The energy and mass balance performance indicators outlined in 

the previous sections allows for the system to be benchmarked. These are: 

1. The energy efficiency 𝜂𝜂 =
HHVproducts

HHVreactants+𝑄𝑄+𝑄𝑄aux
. For solar-upgrading processes such 

as gasification and reforming, report additionally the upgrade factor  

𝑈𝑈 =
HHVproducts

 HHVfeedstock
. 

2. The conversion extent of the feedstock, 𝑋𝑋A = 1 −
�̇�𝑛A,𝑓𝑓

�̇�𝑛A,0
. 

3. The selectivity towards the desired product 𝑆𝑆B =
�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0−�̇�𝑛A,𝑓𝑓
, and the yield of the 

desired product 𝑌𝑌B =
�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0
 if the selectivity is not reported.  

4. Performance stability, i.e., report the above indicators over time during a test 

campaign. 

Conversion extent, selectivity, and energy efficiency, combined with mass flow rates 

offer a complete description of the reactor performance, and the performance over time 

can be used to gauge stability. For cyclic processes, the benchmarks should use 

integrals over an entire cycle as outlined here. Similarly, for continuous processes, 
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time averaged parameters will be better indicators of performance. 

 

Table 2 The performance indicators for the example solar fuel processes 
discussed in this work. 

Reactor type 
Efficiency 

𝜼𝜼 

Conversion 
extent 

𝑿𝑿𝒊𝒊 

Selectivity (or Yield) 

𝑺𝑺 (or 𝒀𝒀) 

Thermochemical 
redox CO2 
splitting 

HHVCO  ∫ �̇�𝑛CO(𝑡𝑡) d𝑡𝑡𝑡𝑡cycle
0

∫ �̇�𝑄(t) + �̇�𝑄aux(𝑡𝑡)  d𝑡𝑡𝑡𝑡cycle
0

 1 −
∫ �̇�𝑛CO2,𝑓𝑓 d𝑡𝑡𝑡𝑡cycle
0

∫ �̇�𝑛CO2,0 d𝑡𝑡𝑡𝑡cycle
0

 
∫ �̇�𝑛CO,𝑓𝑓 d𝑡𝑡𝑡𝑡cycle
0

∫ �̇�𝑛CO2,0 − �̇�𝑛CO2,𝑓𝑓 d𝑡𝑡𝑡𝑡cycle
0

 

Solar methane 
reforming  

∑ �̇�𝑛iHHVi
products
𝑖𝑖

�̇�𝑛CH4,0HHVCH4 + �̇�𝑄
 1 −

�̇�𝑛CH4,𝑓𝑓

�̇�𝑛CH4,0
 

�̇�𝑛CO,𝑓𝑓

�̇�𝑛CH4,0 − �̇�𝑛CH4,𝑓𝑓
   

Biomass 
gasification2 

∑ �̇�𝑚iHHVi
gas−products
𝑖𝑖

�̇�𝑚biomass HHVbiomass + �̇�𝑄
 1 −

�̇�𝑚C−residue

�̇�𝑚C,0
 (𝑌𝑌syngas

=
∑ 𝜈𝜈𝑖𝑖,𝐼𝐼�̇�𝑛i,gas
gases
𝑖𝑖

�̇�𝑛C,0
) 

Generic 
𝐀𝐀 → 𝐁𝐁 

�̇�𝑛BHHVB 
�̇�𝑛AHHVA + �̇�𝑄 + �̇�𝑄aux

       1−
�̇�𝑛𝐴𝐴,𝑓𝑓

�̇�𝑛A,0
 

�̇�𝑛B,𝑓𝑓

�̇�𝑛A,0 − �̇�𝑛A,𝑓𝑓
 

 

 
2 As there are a large number of possible byproducts and the exact desired composition of the syngas is not always 
clear, it is common to simply report syngas yield together with conversion extent, instead of selectivity in this case.  
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Part B: Literature Review 
This literature review was performed as part of Task 8.2, with the goal of guiding the 

definition of figures of merit for monitoring solar fuel production reactors. The 

development and application of techniques for the performance evaluation of solar 

reactors will be established according to the following metrics: 

 Fuel quality and process selectivity (fuel composition and purity); 

 Long-term cyclic stability for materials and structures; 

 Specific fuel output (mass conversion); 

 Solar-to-fuel energy efficiency (energy conversion). 

The information considered on solar thermochemical processes included the use of 

different solar technologies and reactors apparatus (such as outdoor and indoor 

research and demonstration facilities) and material sources (different types of 

feedstock materials). Concentrated solar technology features high potential to convert 

solar energy into both thermal and chemical energy with wide-ranging applications. 

For that purpose, more than 200 publications were thoroughly analysed on the subject 

and the data was arranged according to both type of data and parameters (Figure 7) 

considering the following main research areas: 

i) Gasification; 

ii) Pyrolysis; and 

iii) Redox reactions. 

For each research area, the information was then structured taking into account the 

subgroup of experimental parameters - reaction temperature, pressure, reaction time, 

solar concentration and number of cycles performed. In the same way, for each 

research area, a subgroup was considered for the type of work, defined as:  

- Experimental Work (E), which correspond to publications reporting work based 
only in the evaluation of the experimental conditions using either concentrating 
direct or undirect solar radiation; 

- Modelling (M), which correspond to publications reporting work based on the 
evaluation of the experimental conditions and also developing theoretical models 
that describe, among others, the effect of experimental conditions, reactor design 
and/or performance, reaction kinetics, energy or mass transfer conditions and 
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main products formation; 

- Solar Simulator (SS), which correspond to publications reporting work based on 
the evaluation of the experimental conditions in indoor solar facilities using 
concentrated light lamps suitable to simulate solar radiation; 

- Modelling and Solar Simulator (M+SS), which correspond to publications reporting 
work based on the evaluation of the experimental conditions, that report or 
developed theoretical models that describe, for instance, the experimental 
conditions, reactor design and/or performance, reaction kinetics, energy or mass 
transfer conditions and main products formation (among others), in indoor solar 
facilities using concentrated light lamps suitable to simulate solar radiation. 

 

 

Figure 7. Literature review conceptual framework on gasification, pyrolysis and 
redox reactions based on solar concentration energy. 

 

In “Parameters” subgroup, and also for statistical purposes, it was considered that all 

information reported in the publications regarding the experimental parameters’ 

temperature, pressure, time, concentration and number of cycles can either refer to a 

specific value, or to a range of values. This specification was assigned as Total of 

Entries. 
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1. Introduction 
Fuel production using concentrated solar energy has a significant potential to reduce 

fossil fuel dependence in current energy economy. The use of solar power to drive 

thermal or thermochemical processes with different temperature requirements (i.e., 

medium- to high-temperature) are some of solar power major advantages. Moreover, 

given the simultaneous demand of carbon-neutral energy, and gaseous and liquid 

hydrocarbon fuels, the implementation of solar-driven fuel production systems 

throughout different technologies is likely to expand significantly in the next years. 

When considering a research perspective, the first step towards the production of solar 

fuels using thermochemical reactors usually includes the demonstration in a 

laboratory environment to better understand a number of critical issues. Among these 

critical issues are process dynamics and heat and mass transfer limitations associated 

with reactor design. The performance of these technologies has been under study 

using high flux solar simulators (HFSS). The HFSS provides an artificial source of 

concentrated solar energy matching the solar spectral distribution using xenon or 

argon lamps aligned to the focal point of a highly reflective ellipsoid reflector. This 

arrangement allows the concentration of radiant energy on the target. Currently, there 

are a great number of HFSS systems worldwide at well-equipped research centres, 

available to the research community (with different technologies, configurations and 

apparatus) and capable of performing several initial studies (Deepak Yadav and 

Rangan Banerjee, 2016). 

The following step usually consists in the use of a solar furnace (SF) with conventional 

solar input (live sun radiation). This arrangement also features a number of different 

types of solar furnaces worldwide. A typical solar furnace generally consists of one or 

more heliostat mirror that reflects the incident solar energy towards a concentrator 

system, which redirects it to a focal point (Figure 7). One interesting feature is that 

most of the solar furnaces used are on-axis arrangement for testing solar reactors. For 

on-axis solar furnaces, the focal point is located between the heliostat arrangement 

and the concentrator. This arrangement is currently seen as an advantage because it 

allows the production of a symmetrical beam distribution away from the focal point 

and the option of attenuating solar radiation by the use of louver shutter (Kuo Zengф 

et al., 2017). However, placing the experimental apparatus between the heliostat and 
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the concentrator system, some of the incoming solar energy is blocked making this 

configuration a major drawback in its use. Even so, it may be noted that a significant 

number of solar furnaces featuring this configuration are used for solar reactors 

testing (E. Koepf et al., 2017). 

 

Figure 8. Horizontal axis solar furnace. 

 

The solar furnaces used for pilot-scale demonstration present a solar input range from 

few to hundreds of kW at reactor aperture. For large-scale operations, such as solar 

thermochemical commercial scale plants and for high concentration, different arrays 

of heliostat mirrors can be found. The use of a secondary concentrator is normally 

justified when solar thermochemical processes require operating temperatures above 

1,000°C (Deepak Yadav and Rangan Banerjee, 2016). 
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2. Solar reactors thermochemical 
processes 
On a broad basis, solar thermochemical processes can be classified according to 

different purposes towards the production of solar fuels and industrial commodities. 

Considering the range of feedstocks or end-use materials with potential to be used in 

these processes, reactor configuration significantly impacts on the physical nature of 

the fuel (i.e., hydrogen, syngas, and other hydrocarbon liquids and solids). 

Even with the existing technologies and processes configuration, major oil and gas 

companies already recognize that it is possible to include synthetic fuels produced in 

solar reactors (i.e., using hydrogen as a key constituent in the process) as a natural 

extension of their standard business model. Indeed, synthetic liquid fuels produced 

from solar-produced synthetic gas through thermochemical processes are considered 

a promising pathway as a renewable and sustainable energy vector. 

Regardless of how to benchmark and evaluate the solar-driven fuel production or the 

materials processing systems, the design of solar reactors is a key factor that 

significantly impacts on type and nature of fuel characteristics (both physical and 

chemical). In general, reactors can be classified as follow (Ronald W. Missen et al., 

1998): 

a) Batch reactor is a discontinuous reactor in which the operation is inherently 

unsteady and usually characterized by a cycle of operation (sufficiently to handle a 

complete set of reactions). This type of reactor is typically composed by a stirred tank 

that is filled with reactants before the reaction starts and emptied after the operation 

is finished (or to the extent that is needed). The reaction may be single-phase or multi-

phase. A semi-batch reactor is a variation of a batch reactor in which one reactant 

may be added intermittently or continuously to another reactant contained in a vessel 

as reaction proceeds (i.e., a fluid can be continuously fed to a biomass feedstock that 

was previously placed inside the reactor. In order to ensure operation pressure and 

other parameters, a product or a flue gas must also be extracted simultaneously). 

b) Continuous reactor (flow reactors) is a reactor featuring a continuous carry material 

(flowing stream) in which reactants are continuously fed into the reactor and emerge 

as continuous stream of product. Depending on the purpose of the studies, these 
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reactors are also suitable for testing cycle operations. 

Although the previous classification is generally used for generic framework, reactors 

could also be assigned according to fuel production physical nature, as specific 

processes may lead to both different reactors design. An example that reflects well 

these differences is related to directly irradiated reactors suitable for dealing with 

carbonaceous materials and undirected solar irradiated reactors that need a heat 

transfer fluid to properly distribute the temperature in the reactor. Moreover, when 

considering different thermochemical processes (i.e., redox reactions, gasification or 

pyrolysis), the production of gaseous, liquids or even solids compounds may differ 

greatly from their physical and chemical nature as distinct phenomena occurs within 

the reactor medium. In fact, experimental conditions and heat and mass transfer 

conditions within the reactor are critical in the design of solar reactors (E. Koepf et al., 

2017). The design and further testing are critical requirements for a scale-up concept 

as a number of issues must be considered. From those, most important are the 

operation demand, use of robust construction materials capable to withstand severe 

operation conditions (i.e., corrosion which could impact on the operation conditions 

and ultimately the quality of the final product), designed to have both low thermal 

inertia and high resistance to thermal shock. 

2.1. Gasification 
In the thermochemical gasification process much R&D have been done over the years 

to convert biomass to syngas or even to adapt coal gasification technology suitable for 

dealing with different biomass sources. In general, different types of gasifiers can be 

found featuring different characteristics. Those characteristics range from fixed 

gasifiers (counter-flow and concurrent-flow) to both stationary and circulating 

fluidized bed and entrained-flow. Gasification is an endothermic process by nature, 

which means that it is necessary to provide heat to sustain the gasification reactions. 

This process offers the possibility to transfer the chemical energy contained in a solid-

fuel into a gaseous energy carrier. 

Gasification typically refers to the conversion in an oxygen- or air-deficient 

environment to produce fuel gases, which are mainly carbon monoxide, hydrogen, 

methane, and lighter hydrocarbons, but depending on the process used, the products 
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can contain significant amounts of carbon dioxide and nitrogen, the latter mostly from 

air. Gasification processes also produce liquids (tars, oils, and other condensates) and 

solids (char and ash) from solid feedstock. Among the parameters that can influence 

the production of hydrogen are feedstock composition, gasifier temperature and 

pressure, moisture content of feedstock, amount of oxidant present, gasifier geometry, 

and mode of gas-solid contact (Ashok Pandey et al., 2019). 

Entrained flow gasifiers (top- and side-fed) are highly efficient, useful for large-scale 

gasification and suitable for feedstock such as coal, biomass, and refinery residues. 

For this type of gasifiers, the requirement for highly pulverized fuel particles may be 

of concern when gasifying biomass is intended. However, at temperatures above 

1000°C tar cracking is improved thus becoming suitable to deal with biomass 

feedstock where tar is a serious issue to consider. Different groups of researchers 

(Vineet Singh Sikarwar et al., 2016; Binlin Dou et al., 2019) recently published detailed 

information on reactor configuration of most common gasifiers, output of products, 

conventional and emerging approaches, challenges and gasification techniques as 

well. 

The process could be either autothermal or allothermal, depending on how the heat is 

provided. Autothermal gasifiers provide the necessary heat to the reactions through 

partial oxidation within the gasification reactor. The autothermal gasification process 

is an inexpensive and sustainable process, which are advantages and the main 

disadvantage of this process is the lack of inside temperature control, which can be 

overcome by adding an excess of one of the component or using a diluent (Ashok 

Pandey et al., 2019). If air is used as oxidizing agent, the syngas contains high amount 

of nitrogen, which can be a shortcoming to the process due to its high dilution. In 

order to overcome this drawback, the syngas production could be attained by using 

an oxidizing agent such as pure oxygen or mixtures of oxygen and steam. One major 

advantage of autothermal gasification is the direct heating of the reactants, which 

results in an increased efficient energy utilization while the allothermal is 

characterized by the separation of the processes of heat production from the heat 

required for the reactions to occur in the reaction medium (consumption). In the 

autothermal process, roughly 35% of the feedstock is burned aiming at supplying the 

activation energy required for the gasification reactions, thus the product gas using 

autothermal gasification has a low-Lower Heating Value (LHV) of 4-5 MJ/m3 (Ashok 

Pandey et al., 2019). 
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The allothermal gasification process depends on an external source of energy to 

provide the activation energy for the endothermal reactions. Thus, in allothermal 

heating, the heat is generated outside the reactor then transferred into the system. 

Usually, allothermal gasifiers are heated by heat exchangers (Figure 9

) or circulated hot bed material is used to heat 

between the combustion and gasification zone (Figure 10). A regular allothermal 

process consists of two reactors (connected by energy flows) in which biomass is 

gasified in the first reactor (for syngas production) and the remaining solid residue (or 

even partial syngas) is combusted in the second reactor to produce the heat for the 

first process. In this process, two gas streams are produced: i) medium calorific syngas 

resulting from the gasification reactor and ii) flue gas from the combustion reactor and 

all carbon containing streams from the gas cleaning can be recycled in the combustion 

zone (converted into heat for further use in gasification reactions). The heat transport 

is achieved either by circulating the bed material or by heat exchangers (Reinhard 

Rauch et al., 2013). 

 

 

 

Figure 9. Allothermal process only 

with heat exchange. 
Figure 10. Allothermal process with 
mass and heat exchange. 

 

Typically, an allothermal gasification system produces medium-LHV syngas, with a 

higher H2 to CO ratio, with near 15 MJ/m3, unlike the autothermal gasification 
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process, using air as the oxidizing agent that produces lower-LHV, as stated above. In 

the allothermal system there is no need for the incomplete combustion or partial 

oxidation (volatile products and some of the char reacts with O2 to form CO2 and CO) 

step to take place because the heat required to volatilize the organic (biomass) material 

is added indirectly. As a result, most of the biomass reacts with CO2 and water vapour 

to produce CO and H2 in the gasification/steam reforming reactions. Afterwards, the 

water-gas-shift reaction reaches equilibrium in the gasifier, the total resulting H2 

concentration from the allothermal gasifier is typically greater (Ashok Pandey et al., 

2019). 

Solar-driven gasification is a particular specification of an allothermal gasification 

process (Figure 11). However, there are additional advantages of considering a solar-

driven process, namely: 

i) Deliver high syngas output per unit of feedstock as no feedstock amount is 

combusted for supply the heat gasification requirements for the reactions; 

ii) Avoid syngas contamination resulting from combustion by-products which 

impacts downstream cost reductions (gas cleaning and separations 

requirements); 

iii) To produce high calorific value syngas with lower CO2 (solar-produced 

syngas has about two times higher calorific value per feedstock unit when 

compared with conventional autothermal gasification); 

iv) Increase gasification temperatures (exceeding 1100°C) promoting faster 

reaction kinetics and both higher quality syngas production and low tar 

content; and 

v) More suitable for processing a great number of carbonaceous materials 

(Christian Wieckert et al., 2013; Alan W. Weimer, 2012). 
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Figure 11. Solar-driven allothermal gasification process. 

Considering the conceptual framework presented in the Figure 8, the literature review 

on the main topic of gasification and for the parameters of temperature, pressure, time 

and solar concentration is presented in Figure 12. This figure depicts the total results 

for gasification considering the type of work classifications previously assigned as 

being: a) distribution for both publications and entries and b) entries’ year footprint. 

This analysis reveals 119 total publications (7 publications/year average), of which 

57.1% were assigned to type of work E, 22.7% to M, 15.1% to SS and 5.0% to M+SS, 

ranging mostly between the year of 2003 and 2019. These results also reveal that 

experimental work has been carried out over the years although an increase in 

publications were only found between 2013 and 2017. Previously and between the 

years of 2008 and 2011, only publications on experimental work associated with 

modelling were performed by the researchers. Studies on solar simulator conditions 

have been considered occasionally over the years. Publications that report information 

on the M+SS type of work were only found in the years of 2005, and 2018 to 2019. For 

this topic, a total of 172 entries were considered. 
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Figure 12. Publications on gasification grouped according to type of work. 

 

Figure 13 to Figure 16 depict the data for gasification considering sequentially several 

reference conditions, such as temperature, pressure, time and solar concentration, 

and the type of work classifications previously assigned; a) distribution for both 

publications and entries; and b) entries’ year footprint. 

The results found for the temperature parameter (Figure 13) reveals 51 total 

publications being 58.8% assigned to the type of work E, 21.6% to the M, 13.7% to 

the SS and only 5.9% to the M+SS. For this analysis, 86 total entries were considered 

most of them assigned to the experimental work (53 entries). 

 

  

Figure 13. Publications on gasification grouped according to type of work for the 
Temperature parameter. 
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In Figure 14 is presented the results obtained for the pressure parameter. For this 

case, less publications were found (16 in total) of which 68.8% were assigned to type 

of work E. The remaining publications representing 12.5% and 18.8% were 

respectively assigned to the type of works M and SS. No publications were found for 

the M+SS type of work. The analysis of the data resulted in 19 entries. 

  

Figure 14. Publications on gasification grouped according to type of work for the 
Pressure parameter. 

When considering the time parameter (Figure 15), 33 publications were found between 

2005 and 2019. From those 45.5% were assigned to the type of work E, 24.2% to the 

M, 21.2% to the SS and 9.1% to the M+SS. The information found in the publications 

resulted in 42 total entries. Regarding the solar concentration parameter, all 

information is presented in the Figure 16. In this case results reveals 19 total 

publications being 63.2% assigned to the type of work E, 31.6% to the M and 5.3% to 

the SS. No publications were found for the M+SS type of work and 25 entries were 

considered in this analysis. 

 

Publications Entries
E 11 13
M 2 2

SS 3 4
M+SS 0 0
Total 16 19

E M

SS M+SS

Publications
Entries

0

5

10

15

20

25

30

35

2000 2005 2010 2015 2020

Pr
es

su
re

 (M
Pa

)

Year of Publication



 

GA No: 823802 25.08.2020 

 

WP8, D8.3 Version 3 Page 42 of 86 
 

  

Figure 15. Publications on gasification grouped according to type of work for the 
Time parameter. 

 

  

Figure 16. Publications on gasification grouped according to type of work for the 
Solar Concentration parameter. 
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temperature. 

Reactors configuration extend from fixed-bed batch to autoclaves and from fluidized 

bed to plasma featuring different experimental conditions and purposes (Joseph 

Zeaiter et al., 2015; R. Edwin Raj et al., 2013; C. Berrueco et al., 2005; L. Tang and 

H. Huang, 2004; M. F. Laresgoiti et al., 2004; Adrian M. Cunliffe and Paul T. Williams, 

1998). When considering large-scale conventional biomass technologies, different 

types of reactors are currently available extending from fixed-bed (Ozlem Onay, 2007) 

to fluidized bed (S. Antony Raja et al., 2010) including entrained flow (Gautami 

Newalkar et al., 2014), free-fall (Adisak Pattiya et al., 2012), vacuum (Manuel Garcı̀a-

Pèrez et al., 2002), ablative (G. V. C. Peacocke and A. V. Bridgwater, 1994) and rotating 

cone (B. M. Wagenaar et al., 1994). 

The operational conditions for pyrolysis are wide-ranging and the process is usually 

classified into fast, flash, and slow and catalytic pyrolysis. Both type of feedstock and 

operational conditions can be set in order to favour the production of solid, liquid or 

gas fractions. For example, fast pyrolysis and flash pyrolysis (which are associated to 

low residence times) generally favour the production of liquid yields, small amounts of 

gaseous compounds and, in some situations, almost no solids are formed (as 

secondary reactions are almost avoided). In contrast, slow pyrolysis produces larger 

amounts of solid compounds due to the increased conversion time which favour the 

existence of secondary reactions. Yet, similar experimental conditions associated to 

reactor and feedstock type could lead to different findings such as higher formation of 

liquid compounds as those found by other authors (Miguel Miranda et al., 2012; 

Miguel Miranda et al., 2015; Filomena Pinto et al., 2017). Liquids produced can be 

used directly (i.e., as boiler fuel and in some stationary engines) or refined into 

chemical and/or petrochemical industries for higher quality uses. 

Taking into account the information presented in the Figure 8, the literature review 

on the main topic of pyrolysis and for the parameters of temperature, pressure, time 

and solar concentration is presented in Figure 17. These results also consider the type 

of work classifications previously assigned as being: a) distribution for both 

publications and entries and b) entries’ year footprint. For this topic, only 28 

publications were found (6 publications/year average) of which 67.9% were assigned 

to type of work of E, 17.9% to M, 10.7% to SS and only 3.6% to M+SS. These 

publications were all published between 2014 and 2018 and the analysis of data 
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reported resulted in 44 total entries. 

 

  

Figure 17. Publications on pyrolysis grouped according to type of work. 

 

The information presented in the Figure 18 to Figure 21 depict the data for pyrolysis 

considering respectively the reference conditions of temperature, pressure, time and 

solar concentration as well as the type of work classifications previously assigned; a) 
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assigned to the type of work E, 20.0% to the M and 13.3% the SS. No publications 

were found for M+SS type of work and all the information considered in this topic 

resulted in 29 total entries. 
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Figure 18. Publications on pyrolysis grouped according to type of work for the 
Temperature parameter. 

 

With respect to pressure parameter, the results are presented in Figure 19. For this 

parameter 7 publications were found of which 85.7% were assigned to the type of work 

E and 14.3% to the M. No publications were found for the type of works of SS and 

M+SS, and the analysis of the reported data resulted in 8 total entries.  

 

  

Figure 19. Publications on pyrolysis grouped according to type of work for the 
Pressure parameter. 
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were found (4 in total), being most of them assigned for the type of work E (75.0%) and 

only 1 publication for the M (25.0%) type of work. No publications were found for the 

SS and M+SS type of works and the information found resulted in 5 total entries. 

 

Publications Entries
E 6 7
M 1 1

SS 0 0
M+SS 0 0
Total 7 8

E M

SS M+SS

Publications
Entries

0,0

0,5

1,0

1,5

2,0

2,5

3,0

2000 2005 2010 2015 2020

Pr
es

su
re

 (M
Pa

)

Year of Publication



 

GA No: 823802 25.08.2020 

 

WP8, D8.3 Version 3 Page 46 of 86 
 

  

Figure 20. Publications on pyrolysis grouped according to type of work for the 
Time parameter. 

 

For the solar concentration parameter (Figure 21), only 2 publications were found, 1 

for each type of work SS and M+SS. The data reported in these publications results in 

a total entries of 2. 

 

  

Figure 21. Publications on pyrolysis grouped according to type of work for the 
Solar Concentration parameter. 
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conceptually the simplest single-step thermal dissociation of water splitting reaction. 

Unfortunately, this reaction not only requires very high temperatures (above 2200°C) 

but also presents the problem of effectively separating H2 and O2 avoiding explosive 

mixtures. 

Thermochemical cycles consist in two or more consecutive chemical reactions in which 

their “net” sum is the H2O splitting into H2 and O2 products. However, the maximum 

temperature step occurs at a temperature level lower than the single-step water 

decomposition chemical reaction. As a result, thermochemical cycles avoid the H2 and 

the O2 separation problem, which allow the operation to take place at moderated high 

temperatures. Considering that the reactions occurring in this step are highly 

endothermic by nature, the input of an external energy source for the process to occur 

is mostly required (Christos Agrafiotis et al., 2015). 

Among a significant number of thermochemical cycles found on the literature review, 

the two-step ones based on oxide redox pair systems are of particular interest. These 

cycles are based on the principle of transition between the oxidized (higher valence 

MeO oxidized) and reduced (lower-valence MeO reduced) form of an oxide of a metal 

capable of exhibiting multiple oxidation states (Tatsuya Kodama and Nobuyuki Gokon, 

2007). In this concept, in the first step of reaction (high-temperature endothermic 

reaction) the higher-valence oxide of such a metal is subjected to thermal reduction 

(TR) in which a quantity of oxygen is release and transforms the metal into a low-

valence state (TR, reaction 1). In a subsequent 2nd step, an exothermic reaction at 

lower-temperature known as water splitting (WS), the reduced oxide is then oxidized 

back to the higher-valence state by taking oxygen from water and producing hydrogen. 

When reaction 1 and 2 are completed, a cyclic operation is then established (Christos 

Agrafiotis et al., 2015). The production of hydrogen (from H2O) and carbon monoxide 

(from CO2) can be combined leading to the production of syngas (also described as 

“solar syngas” (Robert C. Pullar et al., 2019). 

This “solar syngas” is suitable for be used in a Fischer-Tropsch (FT) technology in a 

number of different product streams (i.e., diesel-like fuel, alcohols and other 

chemicals). As this approach is conceptually simple, the TR step is commonly used for 

both WS and carbon dioxide splitting (CDS) reactions allowing particular redox 

material and the respective thermochemical reactor to be separately used from each 

other (production of a H2 stream separately from the CO stream. The process can be 
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performed simultaneously when steam and CO2 are co-fed to the redox material, to 

produce syngas on a single step. 

Highest dissociations are usually required, as the subsequent full replenishment of 

the oxygen released during dissociation of oxygen taken from H2O/CO2 during 

oxidation, results in higher H2/CO product yields (per mass of redox material) which 

results in higher cycle efficiencies. These cycle efficiencies correlate the fuel’s energy 

content with the amount of energy that must be supplied to the reaction medium in 

order to fulfil the entire cycle (i.e., relation between the higher heating value (HHV) of 

the fuel produced and the thermochemical cycle energy input). Thus, hydrogen or 

syngas production have been well achieved through both cycles of metal oxide/metal 

systems (i.e., ZnO/Zn) or metal oxide/metal oxide pairs. Some typical examples are 

the oxides of a single multivalent metal such as Fe3O4/FeO and Mn3O4/MnO or the 

CeO2/Ce2O3. 

Metal oxides thermochemical cycles such as zinc oxide (ZnO) is an example of syngas 

production. A significant number of reactor concepts have been developed by 

researchers worldwide for ZnO reduction using solar energy at small-scale (from 

packed beds to entrained and aerosolized flows (Christopher Perkins et al., 2008; Erik 

Koepf et al., 2012) to quasi-batch arrangements (Marc Chambon et al., 2010; L. O. 

Schunk et al., 2008; Stéphane Abanades et al., 2007; Reto Müller et al., 2006; P. 

Haueter et al., 1999). In the solar-driven endothermic reduction of ZnO, metallic Zn is 

produced at temperatures above 1,700°C followed by an oxidation reaction 

(exothermic) between Zn and H2O (and/or CO2) at lower temperature (< 1,000°C). As 

a result, a synthetic gas (syngas) is produced capable to be further processed in a FT 

synthesis towards the production of liquid synthetic hydrocarbon fuels for an 

increasing number of purposes (Irving Wender, 1996). Other similar example is the 

zinc produced carbothermally where coal, charcoal and other carbonaceous materials 

are consumed providing a reduction of process temperature of around 300°C and 

resulting in the formation of a gas mainly composed of Zn(g) and CO (rather than Zn(g) 

and O2). 

The technological development, both in materials and reactors capable of achieving 

and sustaining high temperatures when irradiated with concentrated solar irradiation, 

are currently in research. Such example is the use of ceria as redox active material for 

thermochemical cycles by changing the chemistry involved. In the ceria-based cycle, 
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the physico-chemical properties can be modified by changing its chemical 

composition, although to date, different operating conditions may be found on 

literature, during thermal reduction and re-oxidation gas separation is still a critical 

issue that affects the efficiency of the process. 

Some small- and large-scale reactors featuring these applications and developments 

were recently published by E. Koepf et al., 2017. The materials used for both the 

window and the cavity receiver must be carefully chosen as they represent the most 

sensitive components of solar reactors that are commonly based on either direct or 

indirect heating of the reactants using concentrated solar energy. Direct heating 

provides efficient and fast heat transfer directly to the reacting matter but such reactor 

technologies must be designed so that to avoid particle deposition on the optical 

window (such as entrained particles and particle-laden flow). Alternatively, indirect 

heating via a heat transfer wall requires using high-temperature resistant refractory 

materials and may suffer from additional heat losses due to indirect heat transfer. 

Conventional solar reactor designs usually make use of insulated cavity-type black 

body receivers that allow obtaining almost isothermal conditions in the cavity volume 

and high solar energy absorption efficiencies (P. Haueter et al., 1999; Reto Mülleret 

al., 2006; L. O. Schunk et al., 2008; E. Koepf et al., 2016). High-temperature resistant 

ceramic materials (refractory) are usually employed for lining the inner reactor volume 

(including both cavity walls and insulation materials). 

Considering once again the information presented in the Figure 8Error! Reference 

source not found., the literature review on the main topic of redox reactions for the 

parameters temperature, pressure, time, solar concentration and number of cycles is 

presented in Figure 22. These results also take into account the type of work 

classifications previously assigned as being: a) distribution for both publications and 

entries and b) entries’ year footprint. For this main topic, 233 publications were found 

between 2004 and 2019 (15 publications/year average), being 57.9% of them assigned 

to type of work E, 30.5% to M, 7.3% to SS and 4.3% to M+SS. These results also reveal 

that type of work E has been carried out continually over the years although between 

2017 and 2018 is more noticeable, while type of work M was almost inexistent until 

211 increased significantly its number of publications between 2014 and 2018. For 

the type of work SS, occasional works have been published over the years while M+SS 

type of work reveals less publications (10 in total) found specifically in the years of 

2007, 2014 and 2015. The analysis of the information on this topic resulted in 507 
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total entries. 

 

  

Figure 22. Publications on redox reactions grouped according to type of work. 

 

Figure 23 to Figure 27 depict the data for redox reactions considering sequentially 

several reference conditions, such as temperature, pressure, time, solar concentration 

and number of cycles and the type of work classifications previously assigned; a) 

distribution for both publications and entries; and b) entries’ year footprint. 

The results found for the temperature parameter (Figure 23) reveals 86 total 

publications of which 57.0% were assigned to the type of work E, 31.4% to the M, 

7.0% to the SS and only 4.7% to the M+SS. In the analysis of the published data, 260 

entries were considered and the largest slice in the chart represents 162 entries that 

were assigned to studies that perform only experimental work. 
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Figure 23. Publications on redox reactions grouped according to type of work for 
the Temperature parameter. 

 

In the Figure 24 is presented all the information obtained for the pressure parameter. 

In this case, 43 publications were found of which 48.8% were equally distributed for 

each type of work E and M, and 2.3% to SS type of work. No publications were found 

for the M+SS type of work and the analysis of the data resulted in 79 total entry being 

45 assigned to the type of work E and 33 to the type of work M. 

 

  

Figure 24. Publications on redox reactions grouped according to type of work for 
the Pressure parameter. 

 

Regarding the time parameter (Figure 25), the results reveal that 48 publications were 

found, of which 60.4% were assigned to the type of work E, 18.8% to M, 12.5% to SS 
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and 8.3% to M+SS. The information found in this group resulted in 97 total of entries 

being most of them assigned to the type of work E (64 entries). A similar outcome was 

found for the solar concentration parameter (Figure 26). As a result, 31 publication 

were reported of which 48.4% were assigned to the type of work E, 41.9% to M and 

3.2% and 6.5% respectively to type of works SS and M+SS. The analysis of the data 

yielded a total of 41 entries being most of them assigned to the type of works E (21 

entries) and M (16 entries). 

 

  

Figure 25. Publications on redox reactions grouped according to type of work for 
the Time parameter. 

 

  

Figure 26. Publications on redox reactions grouped according to type of work for 
the Solar Concentration parameter. 

 

Publications Entries
E 29 64
M 9 16

SS 6 10
M+SS 4 7
Total 48 97

E M

SS M+SS

Publications
Entries

0

500

1000

1500

2000

2500

3000

2000 2005 2010 2015 2020

Ti
m

e (
m

in
)

Year of Publication

Publications Entries
E 15 21
M 13 16

SS 1 1
M+SS 2 3
Total 31 41

E M

SS M+SS

Publications
Entries

0

500

1000

1500

2000

2500

3000

2000 2005 2010 2015 2020

So
lar

 co
nc

en
tra

tio
n (

su
ns

)

Year of Publication



 

GA No: 823802 25.08.2020 

 

WP8, D8.3 Version 3 Page 53 of 86 
 

For the number of cycles parameter (Figure 27) the literature review reveals 25 as total 

publications. From those, the great majority (84.0%) were assigned to type of work E 

while the remaining publications were only associated to M (4.0%) and SS (12.0%) type 

of works. The analysis of the data published result in 30 total entries most of them 

focus on type of work E (26 entries). 

 

  

Figure 27. Publications on redox reactions grouped according to type of work for 
the Cycles (number of) parameter. 
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3. Conclusions 
The main purpose of this document is to support a standardised method of assigning 

a figure of merit to each performance metric previously established through literature 

review on the topic of solar thermochemical reactors towards fuel production using 

concentrated solar energy. As such, more than 200 articles were thoroughly analysed 

on the topic of solar thermochemical processes for fuel production and grouped 

according to thermal processes: i) gasification, ii) pyrolysis and iii) redox reactions. 

Due to the significant amount of information published, the proposed objectives found 

on each topic and to make feasible the approach, it was developed a database form in 

Visual Basic for Applications in order to both fine-tune and group accordingly all the 

information. For each type of work previously established, an additional structure was 

considered in which the information was organized considering each reference 

parameter. This structure was defined as being: i) experimental work in real conditions 

(E), ii) modelling work (M), iii) experimental work on solar simulator (SS) and iv) 

modelling with solar simulator work (M+SS) considering the reference parameters of 

temperature, pressure, time, solar concentration and number of cycles (if available). 

Afterwards, the information reported of each publication was statistically treated and 

graphically represented considering all parameters in the subject of analysis. 

For the main topic of gasification, 119 publications were found between 2003 and 

2019 (7 publications/year average) distributed for each type of work as being 57.1% 

E, 22.7% M, 15.1% SS and 5.0% M+SS. From those publications, 51 were assigned to 

the temperature parameter being 58.8% E, 21.6% M, 13.7% SS and 5.9% M+SS, while 

for the pressure parameter 16 publications were found of which 68.8% E, 12.5% M 

and 18.8% SS as no publications were found for the M+SS type of work. Regarding the 

time parameter, 33 publications were found being 45.5% E, 24.2% M, 21.2% SS and 

9.1% M+SS, whereas for the solar concentration parameter 19 publications were found 

being 63.2% E, 31.6% M and 5.3% SS as no publications were found for the M+SS 

type of work. 

For the main topic of pyrolysis, 28 publications were found between 2014 and 2019 

(6 publications/year average) distributed for each type of work as 67.9% E, 17.9% M, 

10.7% SS and 3.6% M+SS. From the total publications, 15 were assigned to the 

temperature parameter being 66.7% E, 20.0% M and 13.3% SS as no publications 
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were found for the type of work M+SS, while for the pressure parameter 7 publications 

were found being 85.7% E and 14.3% M, and no publications were found for the SS 

and M+SS type of works. When considering the time parameter, a total of 4 

publications were found being 75.0% E and 25.0% M as no publications were found 

for type of works SS and M+SS while for the solar concentration parameter only 2 

publications were found (one for each type of work SS and M+SS). 

For the main topic of redox reactions, 233 publications were found between 2004 and 

2019 (15 publications/year average) distributed for each type of work as 57.9% E, 

30.5% M, 7.3% SS and 4.3% M+SS. From that total, 86 were assigned to the 

temperature parameter being 57.0% E, 31.4% M, 7.0% SS and 4.7% M+SS, while for 

the pressure parameter 43 publications were found of which 48.8% were equally 

distributed for each type of work E and M, and 2.3% for SS as no publications were 

found for the M+SS type of work. For the time parameter, 48 publications were 

considered being 60.4% E, 18.8% M, 12.5% SS and 8.3% M+SS, while for the solar 

concentration parameter 31 publications were found distributed as 48.4% E, 41.9% 

M, 3.2% SS and 6.5% M+SS. When considering the number of cycles parameter, 25 

publications were found most of them associated to the type of work E (84.0%) while 

the remaining publications were only associated to the M (4.0%) and SS (12.0%) type 

of works. No publications were found addressing the type of work M+SS. 
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