

European Union's Horizon2020 Research and Innovation programme under grant agreement n°823802

> SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

Lecture: Advanced control of solar process heat applications

Prepared by:

Lidia Roca CIEMAT – Plataforma Solar de Almería lidia.roca@psa.es

Automatic control: a (very) brief introduction

 Control structures of continuous systems. SHIP and water desalination processes.

- Device or process working by itself with little or no direct human control.
- To maintain the variables of a process within defined limits, with a desired behavior and minimizing the effect of external variables

- Device or process working by itself with little or no direct human control.
- To maintain the variables of a process within defined limits, with a desired behavior and minimizing the effect of external variables

WHEN YOU'RE IN SOMEONE ELSE'S SHOWER AND YOU GET THE CONTROLS ALL WRONG

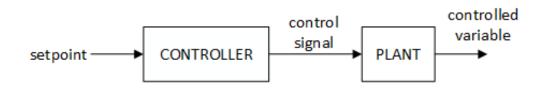
What do you do during the shower time?

- 1. Open the water tap
- 2. Touch the water with your hand
- 3. Manipulate the tap trying to reach the desired water temperature

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th - 6th, 2021

@instachaaz

- 1. To observe the behavior of the real process
- 2. Compare the behavior with the desired one
- 3. Act over the process to reach the desired objective

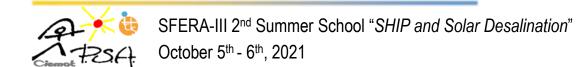

Control systems. Some definitions

- **Plant/Process**. The mechanism, device or process to be controlled.
- **Output** (controlled variable, process variable). Variable or property of the plant that must be controlled.
- Input (control variable). Variable or signal that, when adjusted, produces important changes in the plant output
- **Reference** (setpoint). Signal that represents the behavior that is desired at the plant output.
- Error. Difference between the setpoint and the controlled variable
- **Disturbance**. A signal that is external to the control system having deleterious effects on the performance of the closed-loop system.
- Actuator. A device that applies the input signal to the plant.
- **Constraints**. Limitations in the variables


Control systems. Some definitions

 Open-loop control. Information is not gained directly from the measurement of the controlled signal.

• Closed-loop (feedback control). The controlled signal is measured. The control error influences the input of the process


Key concepts

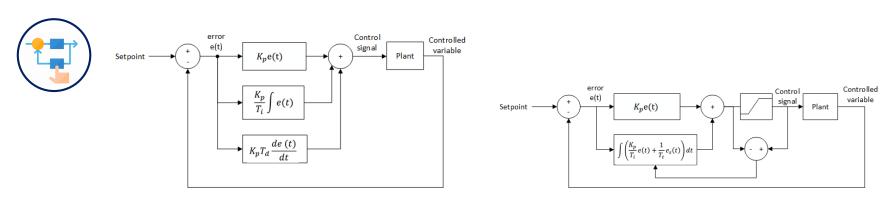
Block diagram

SHIP & solar desalination application

Category I: Basic control approaches

- PID
- Feedforward
- Cascade controller

Category II, III & IV: advanced control


- Gain scheduling GS
- Time delay compensation TDC
- Decoupling control
- Model predictive control MPC
- Neural Network

Seborg, D. E. (1999). A perspective on advanced strategies for process control (revisited). In Advances in Control (pp. 103-134). Springer, London.

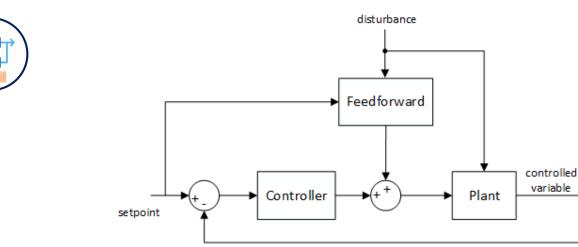
The PID controller

- The most common algorithm
- · It has the ability of eliminating steady state offsets
- It can anticipate the future

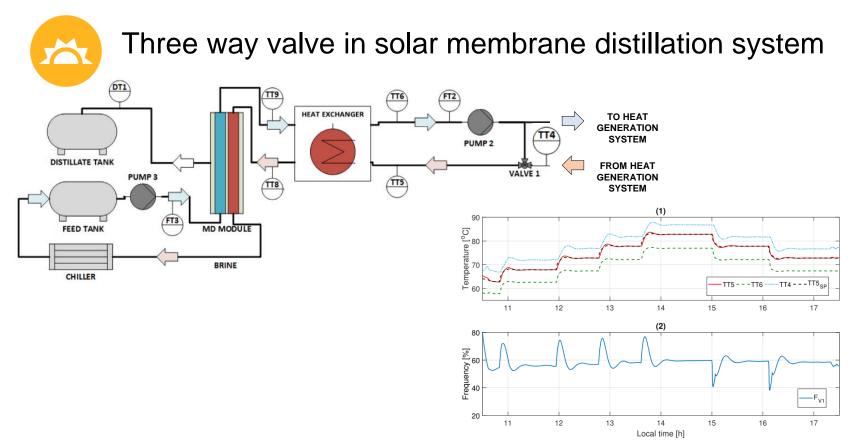
PID Non-interacting form

Anti-windup

The PID controller

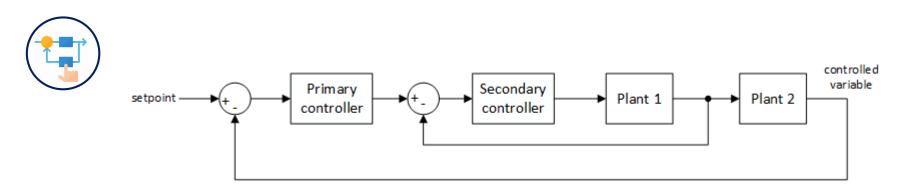

J.D. Gil, A. Ruiz-Aguirre, L. Roca, G. Zaragoza, M. Berenguel, Solar membrane distillation : a control perspective, in: 23rd Mediterr. Conf. Control Autom., 2015: pp. 836–842.

The feedforward controller



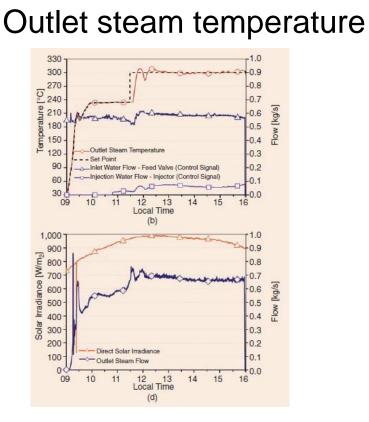
- It eliminates the effect of disturbances before they have created control errors.
- It requires process models
- It requires disturbance measurements
- It complements feedback control

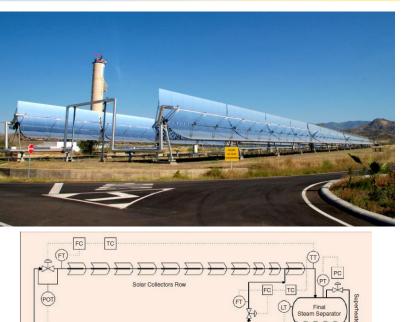
The feedforward controller

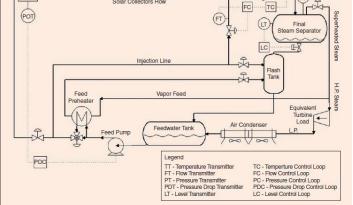

J. D. Gil, L. Roca, G. Zaragoza, and M. Berenguel, "A feedback control system with reference governor for a solar membrane distillation pilot facility," Renew. Energy, vol. 120, pp. 536–549, 2018.

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th. 2021


Cascade controller


- It can be used when there are several measurement signals and one control variable.
- It splits the control problem in two time scales and two control loops: an inner control loop (slave) and the outer control loop (master).



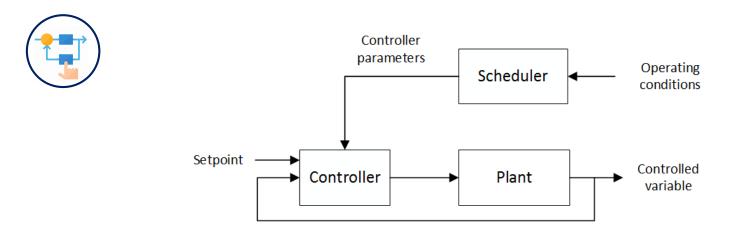
Cascade controller

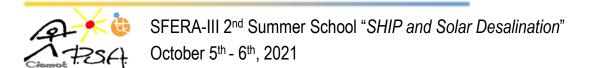
L. Valenzuela, E. Zarza, M. Berenguel, E.F. Camacho, Direct steam generation in solar boilers, IEEE Control Syst. Mag. 24 (2004) 15–29.

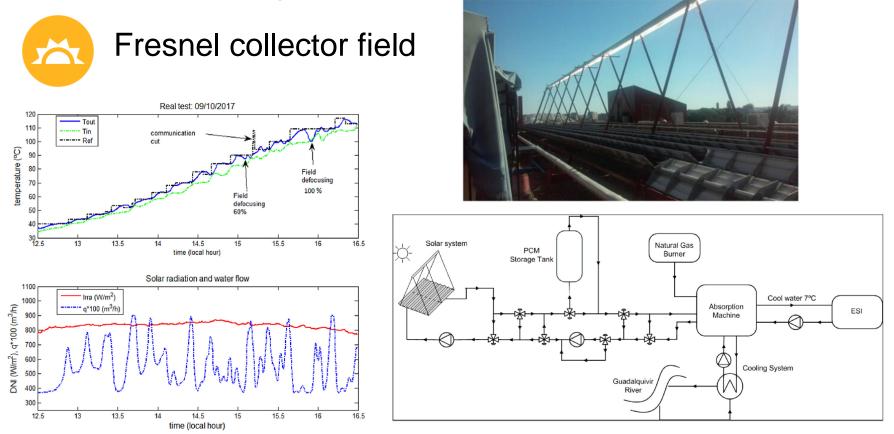
Category I: Basic control approaches

- PID
- Feedforward
- Cascade controller

Category II, III & IV: advanced control

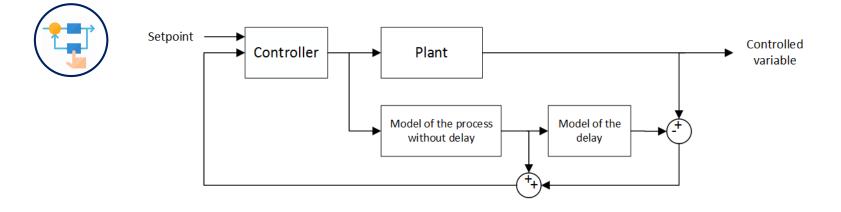

- Gain scheduling GS
- Time delay compensation TDC
- Decoupling control
- Model predictive control MPC
- Neural Network

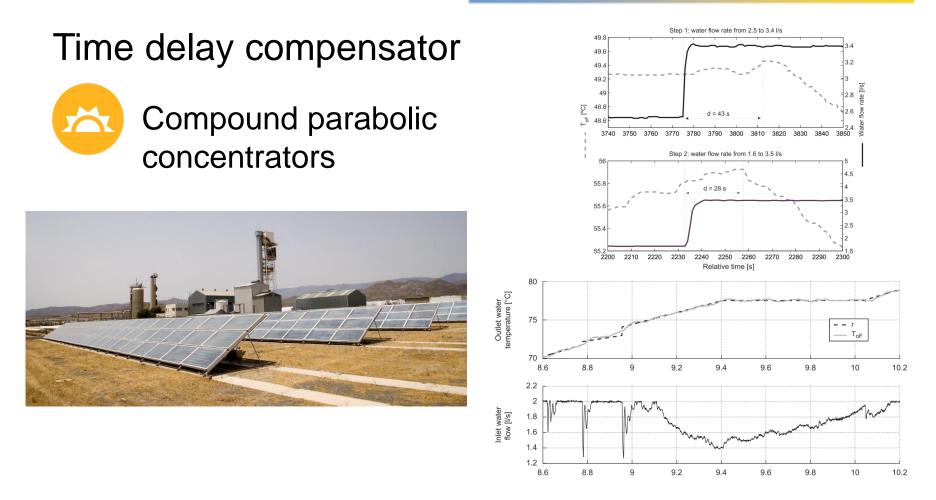

Seborg, D. E. (1999). A perspective on advanced strategies for process control (revisited). In Advances in Control (pp. 103-134). Springer, London.


Gain scheduling

- Controllers that have the ability of adapting to changes in process dynamics
- Controller parameters can be computed from measurement variables related to the operating point or operating conditions

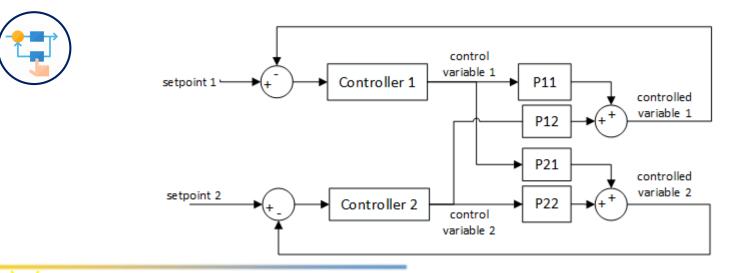
Gain scheduling


Gallego, A. J., Merello, G. M., Berenguel, M., & Camacho, E. F. (2019). Gain-scheduling model predictive control of a Fresnel collector field. Control Engineering Practice, 82, 1-13.


Time delay compensation

- Dead times appears in many solar processes, usually associated with mass transport or doe to the accumulation of several low-order systems.
- In TDC schemes, the controller is designed without considering the delay of the process

L. Roca, J.L. Guzman, J.E. Normey-Rico, M. Berenguel, L.J. Yebra, Robust constrained predictive feedback linearization controller in a solar desalination plant collector field, Control Eng. Pract. 17 (2009) 1076–1088. L. Roca, J.L. Guzman, J.E. Normey-rico, M. Berenguel, Filtered Smith Predictor with nonlinear model applied to a solar field, in: 2014 Eur. Control Conf., Strasbourg, France, 2014.


SFERA-III 2nd Summer School "SHIP and Solar Desalination"

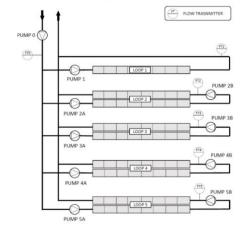
October 5th - 6th, 2021

Decoupling control

- In Multi-Input-Multi-Output (MIMO) systems we must control simultaneously M variables with N available control signals.
- One of the most important problems in MIMO systems control is the coupling problem
- We can use decouplers to compensate for undesirable process
 interactions

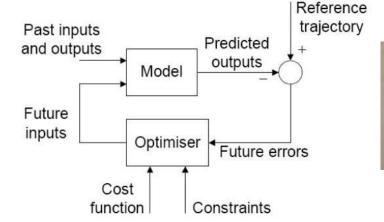
SFERA-III 2nd Summer School "SHIP and Solar Desalination"

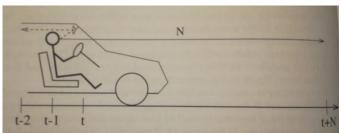

October 5th - 6th, 2021


Decoupling control

Flat plate collectors

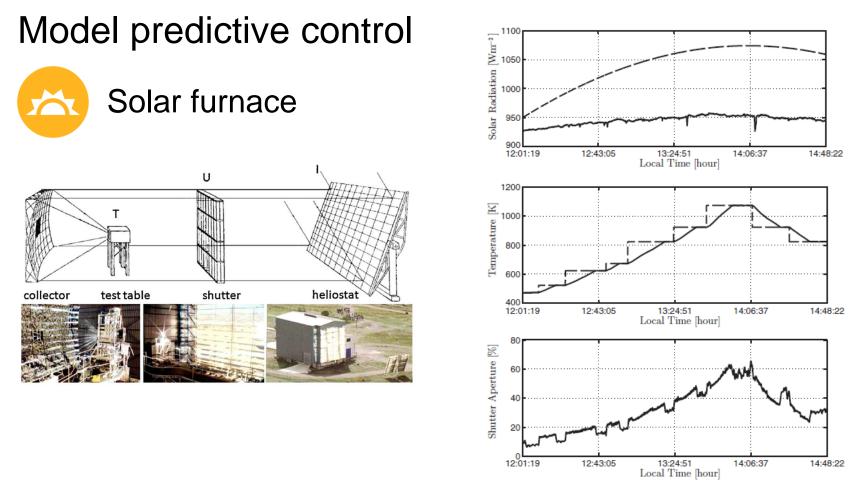
A. Tosi, L. Roca, J.D. Gil, A. Visioli, M. Berenguel, Multivariable controller for stationary flat plate solar collectors, in: Proc. 7th Int. Conf. Syst. Control, Valencia (Spain), 2018; pp. 7–12.


Model predictive control

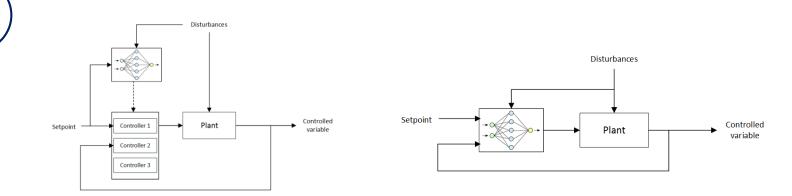


It does not designate a specific control strategy but an ample range of control methods. The ideas are:

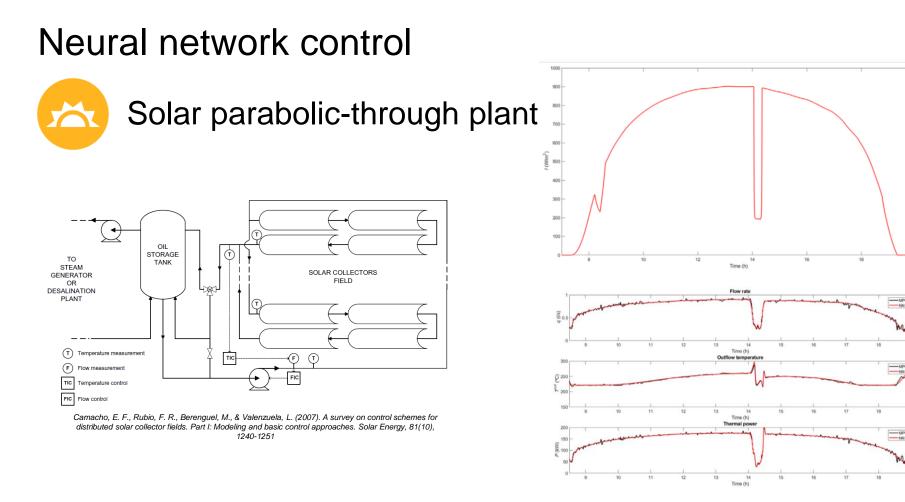
- Explicit use of a model to predict the process output at future time (horizon)
- The control sequence is calculated by minimizing an objective function
- Receding strategy



Beschi, M., Berenguel, M., Visioli, A., Guzmán, J. L., & Yebra, L. J. (2013). Implementation of feedback linearization GPC control for a solar furnace. Journal of Process Control, 23(10), 1545-1554


SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th, 2021


Neural network control

- Artificial Neural Networks (ANN) are models designed to emulate the human brain
- They are good for tasks to complete information, they can learn from examples and are able to deal with non-linear problems.
- They can be used in diverse applications in control (to model the behavior of the plant or to calculate the control signal)

Ruiz-Moreno, S., Frejo, J. R. D., & Camacho, E. F. (2021). Model predictive control based on deep learning for solar parabolic-trough plants. Renewable Energy, 180, 193-202

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th, 2021

- D.E. Seborg, A Perspective on Advanced Strategies for Process Control (Revisited), Adv. Control. (1999) 103–134.
- J.D. Gil, A. Ruiz-Aguirre, L. Roca, G. Zaragoza, M. Berenguel, Solar membrane distillation : a control perspective, in: 23rd Mediterr. Conf. Control Autom., 2015: pp. 836–842.
- J.D. Gil, L. Roca, G. Zaragoza, M. Berenguel, A feedback control system with reference governor for a solar membrane distillation pilot facility, Renew. Energy. 120 (2018) 536–549.
- L. Valenzuela, E. Zarza, M. Berenguel, E.F. Camacho, Direct steam generation in solar boilers, IEEE Control Syst. Mag. 24 (2004) 15–29.
- A.J. Gallego, G.M. Merello, M. Berenguel, E.F. Camacho, Gain-scheduling model predictive control of a Fresnel collector field, Control Eng. Pract. 82 (2019) 1–13.
- L. Roca, J.L. Guzman, J.E. Normey-Rico, M. Berenguel, L.J. Yebra, Robust constrained predictive feedback linearization controller in a solar desalination plant collector field, Control Eng. Pract. 17 (2009) 1076–1088.
- L. Roca, J.L. Guzman, J.E. Normey-rico, M. Berenguel, Filtered Smith Predictor with nonlinear model applied to a solar field, in: 2014 Eur. Control Conf., Strasbourg, France, 2014.
- A. Tosi, L. Roca, J.D. Gil, A. Visioli, M. Berenguel, Multivariable controller for stationary flat plate solar collectors, in: Proc. 7th Int. Conf. Syst. Control, Valencia (Spain), 2018: pp. 7–12.
- E. F. Camacho, C. B. Alba, Model predictive control. Springer (2007).
- M. Beschi, A. Visioli, M. Berenguel, J.L. Guzmán, L.J. Yebra, Implementation of feedback linearization GPC control for a solar furnace, J. Process Control. 23 (2013) 1545–1554.
- E.F. Camacho, F.R. Rubio, M. Berenguel, L. Valenzuela, A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches, Sol. Energy. 81 (2007) 1252–1272.
- S. Ruiz-Moreno, J.R.D. Frejo, E.F. Camacho, Model predictive control based on deep learning for solar parabolic-trough plants, Renew. Energy. 180 (2021) 193–202.

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

Solar Facilities for the European Research Area

SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

End of Presentation

- Thank you for your attention
- Questions ?

Prepared by:

Lidia Roca PSA-CIEMAT lidia.roca@psa.es