

European Union's Horizon2020 Research and Innovation programme under grant agreement n°823802

> SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

Lecture: Innovative design of a linear Fresnel concentrator for Process Heat Applications

Prepared by: Loreto Valenzuela

CIEMAT, Plataforma Solar de Almería

loreto.valenzuela@psa.es

MINISTERIO DE CIENCIA E INNOVACIÓI

Energéticas, Medioambientales y Tecnológicas

Introduction

- Linear Fresnel Collector (LFC) is a concentrating solar collector with
 - fixed solar receiver,
 - mobile optical concentrator.
- The primary optical concentrator follows a channel shape divided into multiple lineas composed of reflectors.
- Geometric concentration ratio*:

$$C_{geo} = \frac{A_{net}}{A_{rec}}$$

Anet: Net reflector area

 A_{rec} : Receiver area

Values of C_{geo} : ~10 to ~ 100

Introduction

- A Linear Fresnel Collector (LFC) can present higher concentration of solar radiation on the receiver surface than a parabolic trough (PT).
- BUT a LFC presents lower optical efficiency than a PTC.
- LFC technology is cheaper than PTC technology due to the greater simplicity of some components.
- CHALLENGE for LFC technology: to compensate for lower efficiency with reduced cost in order to be more competitive.

- Augustin Jean Fresnel (1788-1828), French physicist
- Thin lens (small weight and volume) for short focal lengths
- First application in lighthouses (1823): to focus light horizontally and make it visible over long distances

 Compared to a parabolic trough collector, in a LFC the reflectors (mirrors) are all located in the same plane in the standard designs.

- Compared to a parabolic trough collector, in a LFC the reflectors (mirrors) are all located in the same plane in the standard designs.
- The optical concentrator of LFC reproduces parabolas with different focal lengths.

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

- Compared to a parabolic trough collector, in a LFC the reflectors (mirrors) are all located in the same plar designs.
- The optical reproduce different fc

- Compared to a parabolic trough collector, in a LFC the reflectors (mirrors) are all located in the same plane in the standard designs.
- The optical concentrator of LFC reproduces parabolas with different focal lengths.
- It works with incidence of direct solar radiation normal (perpendicular) or not to the plane of aperture.

Fuente: NOVATEC Solar (www.novatecsolar.com)

<u>1.4 MWe LFC power plant in Calasparra (Spain) from</u> <u>NOVATEC Solar</u>

- Sun-tracking principle:
 - Each row of reflectors has a different tilt angle.
 - The tilt is directly related to the transversal incidence angle of the solar radiation and reflectors row position.

- Sun-tracking principle:
 - Each row of reflectors has a different tilt angle.
 - The tilt is directly related to the transversal incidence angle of the solar radiation and reflectors row position.

- Sun-tracking principle:
 - Individual actuators or one-single actuator for the entire set of reflectors making up the primary optical concentrator

- Sun-tracking principle:
 - Individual actuators or one-single actuator for the entire set of reflectors making up the primary optical concentrator

- Reflectors:
 - -Flat or slightly curved mirrors (on the supporting structure)
 - -Metals used: silver-glass or aluminum mirrors

- Reflectors:
 - -Flat or slightly curved mirrors (on the supporting structure)

Curvature:

- Cylindrical \rightarrow preferred
- Parabolic ×
- Curvature radius of a cylindrical mirror is twice that of a parabolic mirror for the same focal length, which affects the manufacturing process of the mirror support facet.
- Less pronounced cylindrical curvature better supports thin mirrors and reduces the risk of breakage.

- Receiver:
 - Cavity with parallel tube bundle
 - -Non evacuated receiver tube+ secondary reflector
 - -Evacuated receiver tube+ secondary reflector

Source: Häberle, 2014

- Receiver:
 - -Cavity with parallel tube bundle
 - -Non evacuated receiver tube+ secondary reflector
 - -Evacuated receiver tube+ secondary reflector

- Receiver:
 - Cavity with parallel tube bundle
 - -Non evacuated receiver tube+ secondary reflector
 - -Evacuated receiver tube+ secondary reflector

Source: Pye et al. ANZSES, 2003

- Reflectors:
 - Flat or slightly curved mirrors (on the supporting structure)
- Receiver:
 - -Cavity with parallel tube bundle
 - -Non evacuated receiver tube+ secondary reflector
 - Evacuated receiver tube+ secondary reflector
- Heat transfer fluid (HTF):
 - -Water/steam (for power generation and SHIP)
 - -Thermal oil (for SHIP)
- HTF temperature @450°C maximum

Overview on LFC technology Optical perfomance Innovative design of LFC for SHIP

Angle of incidence in a LFC

- 1. Angle of incidence (θ) : angle between the straight line to the Sun and the line of intersection between the plane of incidence and the transversal plane.
- 2. Transversal angle of incidence (θ_T) : angle between the line towards the zenith and the projection of the traight line towards the Sun in the transversal plane.

Longitudinal angle of incidence (θ_L) : angle between the zenith and the projection of the straight line towards the Sun in the longitudinal plane.

- 3. Receiver pipe.
- 4. Plane of incidence.
- 5. Transverse plane.
- 6. Solar reflector rows/lines.

LFC: optical losses

- Cosine factor: effective area of reflection (both in transversal and longitudinal direction)
- End-losses: relevant in the longitudinal direction
- Shading
- Blocking

- The transverse (θ_T) and longitudinal (θ_L) angles of incidence are the main parameters used to characterize the optical performance of a LFC.
- Effective radiation in the receiver:

$$G_b * \cos \theta$$

where G_b is the direct solar radiation

• Optical efficiency of a LFC:

$$\eta_{opt} = \eta_{opt,0^{\circ}} \cdot K(\theta) = \eta_{opt,0^{\circ}} \cdot K(\theta_L, \theta_T)$$

where $\eta_{opt,0^{\circ}}$ is the optical efficiency for $\theta = 0^{\circ}$ and $K(\theta)$ corresponds to the **incidence** angle modifier (also found in literature with the acronym IAM).

Factorization method by McIntire (1992): $K(\theta_L, \theta_T) = K(\theta_L, 0) \cdot K(0, \theta_T)$

• Optical efficiency of a CLF:

$$\eta_{opt} = \eta_{opt,0^{\circ}} \cdot K(\theta) = \eta_{opt,0^{\circ}} \cdot K(\theta_L, \theta_T)$$

where $\eta_{opt,0^{\circ}}$ is the optical efficiency for $\theta = 0^{\circ}$ and $K(\theta)$ is the incidence angle modifier (also found in literature as $IAM(\theta)$)

LFC: First designs

- First prototype in Marsella, France (1961) by Giovanni Francia.
- In the 1970s some companies worked on various design (Suntech, FMC Corporation, etc.).
- In the 1990s Mills developed the CLFR (compact linear Fresnel reflector) concept.

Primeros esquemas del diseño CLFR (Australia)

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th-6th, 2021

Slide 28

6.5 The Itek LFR concept from the 1970s (USOTA, 1978).

Giovanni Francia, 1961

LFC: Designs for Solar Power Plants

- Design of the company AUSRA (Australia/USA).
- First prototype in 2004, Lidell (Australia)
- 5 MW_e power plant in Bakersfield (California), 2008
- In 2010 the French company AREVA bought AUSRA and its LFC technology.
- Non-evacuated bundle receiver, and secondary reflector in a trapezoidal cavity

Lidell (Australia), Source: John Pye

Bakesrsfield (USA), Source: www.ausra.com

LFC: Designs for Solar Power Plants

- Design of the company AUSRA (Australia/USA).
- First prototype in 2004, Lidell (Australia)
- 5 MW_e power plant in Bakersfield (California), 2008
- In 2010 the French company AREVA bought AUSRA and its LFC technology.
- Non-evacuated bundle receiver, and secondary reflector in a trapezoidal cavity

Source: Areva Solar

LFC: Solar Power plant configuration

- LFC solar field directly integrated in the power cycle in the power plants in operation (steam cycle).
- Solar field is configurated as:
 - Boiler
 - Boiler + superheater
- Low-medium grid stability (No LDES or auxiliary system used in existing systems)
- LDES for direct steam generation technology is not fully developed. Use of steam accumulators.

LFC: Designs for SHIP

- Industrial Solar (GE) LF-11 design (www.industrial-solar.de)
- Collector area: 22 m²/module
- Triangulr receiver support structure
- Evacuated tube receiver and secondary reflector
- Several commercial projects.
- Solar heat generation
- Design @120bar (standard 40 bar) @400°C

LFC: Designs for SHIP

- SOLATOM (ES) FLT-20 design (www.solatom.com)
- Collector area: 26.4 m²/module
- Triangular receiver support structure
- Transport and assembly for container transport
- Evacuated tube receiver and secondary reflector
- Commercial projects.
- Solar heat generation

LFC: Designs for SHIP

- Rioglass (ES) Sun2Heat design (www.rioglass.com)
- Collector area: 25 m²/module
- Central pylon receiver support structure
- Evacuated pipe receiver without secondary reflector
- Demonstration projects
- Solar heat generation

Módulo unitario: 25m² (6,2m ancho x 4m largo)

- PSA design SOLTERMIN project (2018-2021)
- Features of the innovative LFC:
 - Development of a prototype of LFC for SHIP applications and integration both on the ground and building roofs.
 - Includes modifications to the standard LFC geometries to increase the optical performance:
 - Inclination of the primary concentrator to the South
 - Division of the primary concentrator into two frames that can be also rotated to the East-West up to 30°
 - Receiver tilt and longitudinal displacement of the receiver to also contribute to optical efficiency increment and reduce end-losses.

• PSA design – Main features

• PSA design – Main features

• PSA design: Targeting strategy at the receiver

Innovative LFC for SHIP SelterMIN

 • PSA design: Contributions of the different features to the optical performance increase → IAM ↑

Figura 3.12 IAM del captador sin modificaciones (λ_{θ} , dz_{θ} y β_{θ}).

IAM of the LFC without the modifications

Figura 3.13 IAM del captador con modificaciones (λ_{set} , dz_{opt} y β_{opt}).

IAM of the LFC with the modifications

Source: Pulido-Iparraguirre et al, PhD Thesis (2020)

Innovative LFC for SHIP SelterMIN

• PSA design: Contributions of the different features to the optical performance increase

S LTERMIN

Innovative LFC for SHIP

PSA design: Other features

Receiver bundle of ½" stainless steel pipes placed inside a trapezoidal cavity with aluminum reflectors in the inner walls

• PSA design: Prototype construction

PSA design: Sun-tracking system

- 12 incremental magnetic encoders, resolution 8000 pulses per turn
- 12 units of 24 Vdc gear motors with 2 speeds, one for the fast approach (9 rpm) and another slower for smooth approach and set position during tracking tasks.
- 3 local control units assisted by real-time clock with astronomical algorithm. Each local controller manages 4 reflector lines. MODBUS RTU protocol communications with the main control unit.

Source: García et al, SolarPACES 2021

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

• PSA design: Facets manufactured on-site

- 1-mm silvered-glass mirrors from AGC
- Glued to pre-curved (cylindrical shape) metallic sheet (radius ~ 6.7 m)
- Durability tests at PSA demonstrated long-term performance
- Details on the manufacturing process:
 - Pulido-Iparraguirre, D., Valenzuela, L., Fernández-Reche, J., Galindo, J., & Rodríguez, J. (2019). Energies, 12(14), 2795. <u>https://doi.org/10.3390/en12142795</u>

SITERMIN

PSA design – Summary of characteristics

Parameter	iLFC
Mirrors width, (m)	0.28
Number of rows (-)	12
Collector Length (m)	10
Gross Collector Area (m ²)	53.2
Net Collector Area (m ²)	33.6
Land Occupation Factor	1.5
Mirror solar reflectance (primary mirrors, glass-silvered), (-)	0.953
Receiver Tube Outer Diameter (mm), Schedule 40 INOX	21.34
Number of tubes in parallel (-)	6
Mirror reflectance (secondary mirrors, aluminum), (-)	0.89
Peak Optical Efficiency, $\eta_{opt,0^{\circ}}$ (%) (estimated)	63.5

PSA design: Techno-economic study

- Solar field (LFC, PTC or FPC) arranged in loops of collectors. N-S orientation for LFCs & PTCs; FPCs with inclination equivalent to latitude; LFC with features described <u>except rotation of the two frames</u>
- Thermal storage: water tank
- Process (IP1 or IP2) fed with solar and/or boiler
- Location: PSA, Spain (37.1° N; 2.36° W); annual DNI = 2071 kWh/m²

Industrial Process	Solar Collector	Field Loops	Collectors / Loop	Tank Size (m ³)
Dairy/85°C (IP1)	LFC	6	4	30
Dairy/85°C (IP1)	PTC	9	4	30
Dairy/85°C (IP1)	FPC	27	2	30
Beer/165°C (IP2)	LFC	58	12	500
Beer/165°C (IP2)	PTC	74	14	500

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

PSA design: Techno-economic study

Annual production per m² of Mirrors (collectors) or Land:

- Mirrors: Higher for PTC and FPC
- Land: Higher for innovative LFC (diff. 50-150 MWh/m²), land occupation per m² of collectors ≈ half the value of PTC and FPC
- => Interesting for industrial areas with low space availability

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

PSA design: Techno-economic study

LCoH (Levelized Cost of Heat):

 $LCoH = (CRF \cdot K_{invest} + K_{O\&M})/E_{net}$

- Range for **land costs**: 0...100 €/m² (to reflect variability in industrial areas)
- Two scenarios regarding cost of **solar field** for LFC:
 - Optimistic (LFC min): 250 €/m²
 - Pessimistic (LFC max): 372 €/m²
- $K_{O\&M}$: 2% of K_{invest} for PTC, 1% for LFC, 0.5% for FPC
- Rest of economic parameters: typical for SHIP

A-XO

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

PSA design: Techno-economic study

Innovative LFC:

- Dairy factory: Lower LCoH than FPC for optimistic case and land cost > 60 €/m²
- Beer factory: Cheaper than PTC in almost all cases (even the pessimistic if land cost > 60 €/m²)

S LTERMIN

• Summary

- Innovative LFC developed that incorporates features to increase optical performance
- Innovative LFC suitable for industrial processes with low & medium temperatures for both roof and ground installation
- Lower production per m² of mirrors than similar technologies (PTC, FPC), but higher production per m² of land
- Prototype set-up almost completed at PSA

Further steps

- Complete the connection of the prototype to one of the hydraulic circuits at PSA to complete its experimental qualification
- Contact to manufacturing companies to explore industrialization in the construction of the system
- Promote its penetration in demonstration projects

Innovative LFC

Patents and publications about the Innovative LFC

- 1. PCT/ES2018/070059 "Captador Solar Lineal Fresnel Adaptable", Int. patent submitted, January 26, 2018.
- 2. P202090004 "Captador Solar Lineal Fresnel Adaptable", **Spanish patent submitted**, February 20, 2020.
- 3. CVE 1846167, "Captador Solar Lineal Fresnel Adaptable", Chilean patent submitted, November 10, 2020.
- Pulido-Iparraguirre, D., Valenzuela, L., Serrano-Aguilera, J.J., Fernández-García, A. Optimizing design of a linear Fresnel reflector for process heat supply. Conference Proceedings of **EuroSun 2016**, Palma de Mallorca (Spain), 11-14 October, 2016. <u>https://doi.org/10.18086/eurosun.2016.02.21</u>
- Pulido-Iparraguirre, D., Valenzuela, L., Serrano-Aguilera, J.-J., & Fernández-García, A. (2019). Optimized design of a linear Fresnel reflector for solar process heat applications. **Renewable Energy**, 131, 1089–1106. <u>https://doi.org/10.1016/j.renene.2018.08.018</u>
- Pulido-Iparraguirre, D., Valenzuela, L., Fernández-Reche, J., Galindo, J., & Rodríguez, J. (2019). Design, Manufacturing and Characterization of Linear Fresnel Reflector's Facets. Energies, 12(14), 2795. <u>https://doi.org/10.3390/en1214279</u>
- 7. Pulido-Iparraguirre, D. PhD Thesis, University of Almería, 2020.
- 8. Garcia, G., Egea, A., Valenzuela, L. Pulido-Iparraguirre, D. Advanced sun-tracking control for an Innovative Linear Fresnel Collector. **SolarPACES 2021** Conference, Online Event, September 2021.
- 9. Alcalde, S., Valenzuela, L., Serrano-Aguilera, J.J. Numerical Investigation of a trapezoidal cavity multi-tube receiver for a Linear Fresnel Collector. **SolarPACES 2021** Conference, Online Event, September 2021.
- Biencinto, M., González, L., Valenzuela, L. Simulation and Economic Analysis of an Innovative Compact Linear Fresnel Collector coupled to Two Industrial Processes with Low and Medium Temperatures. SolarPACES 2021 Conference, Online Event, September 2021.

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th-6th, 2021

Slide 52

SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

End of Presentation

Thank you for your attention Questions ?

Prepared by:

Loreto Valenzuela Gutiérrez CIEMAT – Plataforma Solar de Almería loreto.valenzuela@psa.es

This work is also part of the Spanish Project **SOLTERMIN** (Ref. ENE2017-83973-R), supported by the *Programa Estatal de Investigación, Desarrollo e Innovación orientada a los Retos de la Sociedad* (National Program of Research, Development and Innovation oriented to Society's Challenges) of the Spanish Government and co-funded by European Regional Development Fund (ERDF).

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th-6th, 2021