

European Union's Horizon2020 Research and Innovation programme under grant agreement n°823802

> SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

Lecture: Thermal storage for SHIP applications

Prepared by:

Dr. Esther Rojas PSA -CIEMAT esther.rojas@ciemat.es

Designing Thermal Storage Systems
TES for Steam as HTF
TES for Water as HTF
TES for Air as HTF
Final comments

Designing Thermal Storage Systems -1

Energy Source

October 5th - 6th, 2021

PSA:

Designing Thermal Storage Systems -2

Thermal Storage

Solar Thermal ✓ DGS technology

Waste heat

Thermal Energy (steam, gas,T,P)

Industrial Processes

- ✓ Steam as HTF
- ✓ Water as HTF
- ✓ Air as HTF
- ✓ Softer requirements

Designing Thermal Storage Systems -3

- ✓ Plant integration ← energy source & sink −
- ✓ Material ← Storing energy mechanism ←
 - if $\Delta T = 0 \rightarrow$ Latent or Thermochemical Storage
 - if $\Delta T \neq 0 \rightarrow$ Sensible Storage

Storage capacity ≡ Stored energy

- ✓ Efficient heat transfer to/from the TES
 - Conducction
 - Convection
 - Radiation

Discharge process

TES for DSG and/or steam as HTF : LATENT STORAGE

 The storage medium undergoes a phase change ⇒Phase change material (PCM)

- <u>Discharge</u> proc.: $Q_{TES}=Q_1-Q_2=m_{PCM} \Delta H_{phase} < 0$
- Storage capacity, Q_{TES}, depends on Latent enthalpy, ∆H_{phase}
- PCM is firstly define by its phase change temperature, T_{change_phase}

Q.

Energy

Q

State 2

Discharge

Charde

States

State 1

LATENT storage – PCMs examples

✓ Adequate phase change temperature: T_m (←Plant Integration)

As high phase change enthalpy as possible

SFERA-III 2nd Summer School "*SHIP and Solar Desalination*" October 5th - 6th, 2021 Akira Hoshi et al. Solar Energy 79 (2005) 332

LATENT storage – PCMs requirements

- ✓ Adequate phase change temperature: T_m
- ✓ Reversible process: low supercooling
 - Supercooling == difference between the onset temperatures of melting and freezing
 - Most materials exhibit some supercooling behavior (between 1 to 50°C)
 - It uses to be magnified by DSC measurements

[1] Bayón& Rojas, Characterization of organic PCMs for medium temperature storage, EMR2015 Conference, Madrid (Spain), February 2015.

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th, 2021

LATENT storage – PCMs requirements

- ✓ No sublimation or vaporization in the working temperature range
- ✓ No degradation in the working temperature range
- ✓ Stability under cycling
 - Careful with the PCM candidates proposed in the literature!!!

Salicylic acid Example of gas emissions close to melting temperature

Hydroquinone

Example of gas emissions

close to melting

D-Mannitol

Example of degradation

A-XO

raturetemperature & degradationSFERA-III 2nd Summer School "SHIP and Solar Desalination"October 5th - 6th, 2021

LATENT storage – Efficient heat transfer

Solid to liquid transitions -> high effective thermal difussivity required

LATENT storage – Efficient heat transfer

• Different and multiple approaches worldwide

Heat transfer enhancers' cost has to be taken into account

SFERA-III 2nd Summer School "*SHIP and Solar Desalination*" October 5th - 6th, 2021etc.

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th, 2021

S61

Eusébio et al. "PROYECTO SHIP", CIES2020 Slide 12

TES for WATER as HTF:

SENSIBLE STORAGE

There is a temperature change in the storage medium $\Delta Q=mC_p (T_2-T_1) \Rightarrow (>0 \text{ in charge}; <0 \text{ in discharge})$

Storage capacity (kWh) depends on temperature interval in the storage medium⇒T₂-T₁

SENSIBLE storage – MEDIUM requirements

- \checkmark Stable in the temperature range of operation, (T₁, T₂)
- ✓ Low vapor pressure for liquid media \rightarrow avoiding presurized tanks
 - Water has to be under pressure: 30bar/230°C; 100bar/311°C (*)
- Non explosive or hazardous materials
- Low price materials
- > High volumetric thermal capacity, ρC_p
 - Solar salt (60%NaNO3+40%KNO3): ~2800 kJ/m³ °C
 - Sinthetic oil: ~ 1900 kJ/m³ °C
 - water: ~ 4200 kJ/m³ °C
 - concrete: ~2500 kJ/m³ °C
 - rocks: ~2700 kJ/m³K
 - Vitrified industrial wastes (Cofalit y Plasmalit): ~3000 kJ/m³K
 - Magnesia : 3390 kJ/m3K

SFERA-III 2nd Summer School "SHIP and Solar Desalination"
 October 5th - 6th, 2021

(*)water critical point: 374°C/218bar

SENSIBLE storage – WATER TANKS

- Well-known technology (DHW applications)
- Thermocline tank: the thinnest the thermal gradient, the best exergy

Storage temperature below 100°C

SENSIBLE storage – AIR as HTF

Designing Thermal Storage Systems -2

SENSIBLE storage – MEDIUM requirements

- Stable in the temperature range of operation, (T₁, T₂)
- ✓ Low vapor pressure for liquid media → avoiding presurized tanks
 - Water has to be under pressure: 30bar/230°C; 100bar/311°C (*)
- Non explosive or hazardous materials
- Low price materials
- High volumetric thermal capacity, pCp

SEERA-III 2rd Summer School "Smile and Solar Desalination

October 5th - 6th, 2021

- Solar salt (60%NaNO3+40%KNO3): ~2800 kJ/m³°C
- Sinthetic oil: ~ 1900 kJ/m³ °C
- water: ~ 4200 kJ/m² °C
- concrete: ~2500 kJ/m³ °C
- rocks: ~2700 kJ/m³K

October 5th - 6th, 2021

FESA:

Vitrified industrial wastes (Cofality Plasmalit): ~3000 kJ/m³K
 Magnesia: 3390 kJ/m3K

(*)water critical point: 374°C/218bar

Slide 14

Slide 16

TES for AIR as HTF - REGENERATORS

- Also known as Regenerative HX
- Used since the Industrial Revolution
 Furnaces in glass making, heated by combustion exhaust gases
 (T>1000°C)

Magnesia Bricks (*k*~5W/mK)

Sic & cordierite ceramic honeycomb (*k*>3W/mK)

TES for AIR as HTF – other solids (CONCRETE) -1

- (Special) Concrete (~2500 kJ/m³K), industrial wastes (Cofalit, Plasmalit)
- Mechanical strength is critical
- Conduction is the main heat transfer mechanism (k_{típica}≤1.5 W/mK)

TES for AIR as HTF – other solids (CONCRETE) -2

Modular systems

25A):

SFERA-III 2nd Summer School "SHIP and Solar Desalination"

October 5th - 6th, 2021

TES for AIR as HTF – other solids (CONCRETE) -3

· O EnergyNes

THERMAL BATTERY ELEMENT

THERMAL BATTERY MODULE

O EnergyNest

THERMAL BATTERY SYSTEM

4MWTH storage capacity; 6 hours storage

Tin	550°C
T _{out_Steam}	220°C; 20 bar

Lowest price per KWh stored, \$1-2 cents Modular: From 500KWh to Several GWh

October 5th - 6th, 2021

Storage material HEATCRETE® Guaranteed temperature 450°C 25 USD/kWh_{th}

SFERA-III 2nd Summer School "SHIP and Solar Desaination"

Slide 20

TES for AIR as HTF – other solids (PACKED BEDS)

Oirect contact air/storage material

- $\textcircled{\text{C}} T_{solid_filler} \neq T_{Air}$
- ⊖ Air does not work as storage medium
- Natural rocks, pebbles or sand (ρCp~2300 kJ/m³K)

ETES Siemens-Gamesa pilot plant tion" (volcanic rocks; 130MWh)

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th - 6th, 2021

Slide 21

TES for AIR as HTF – other solids (PACKED BEDS)

Challenges:

> avoid thermal ratchening

potential unfordable mechanical stresses!!!: for the walls and/or the filler

Discharged tank cold wall tank and filler

Charging tank thermal walls expansion

pebbles degradation

Tested in an electrical oven: 14 heating-cooling cycles

SFERA-III 2nd Summer School "SHIP and Solar Desalination" October 5th - 6th, 2021

Tested in ALTAYR: 2 charge-discharge cycles at Tmax =700 °C

Resuming and Final Remarks

- A holistic approach is need for an appropriate TES design
- Latent storage has a lot of challenges to face, mainly in the range 180-225°C
- Water storage tanks (sensible storage) is the most use storage (T<100°C)</p>
- Sensible storage on solids is under development with promising solutions:
 - Regenerative HX at medium temperature
 - Packed beds

..... Many challenges to face!!!.....

Solar Facilities for the European Research Area

SFERA-III 2nd Summer School October, 5th- 6th, 2021 Almería (Spain)

