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Business Area

Solar Thermal Power Plants and Industrial Processes

 Solar Thermal Power Plants

 Concentrating Solar Collectors

 Water Treatment and Separation

 Thermal Energy Storage for

Power Plants and Industry

 Industry Processes and Process

Heat

 Efficient Heat Exchangers
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AGENDA

 Introduction to thermal storage in CSP

 Sensible heat storage

 1-Tank thermal energy storage with stratification 

 1-Tank Storage: Prototype at Fraunhofer ISE
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INTRODUCTION

 Introduction

 Purpose of (thermal) energy storage in CSP plants

 Capacity factor of CSP w/ and w/o storage

 Storage capacity, solar multiple and full load hours

 Thermal storage classification

 Latent heat storage

 1-tank thermal energy storage with stratification 

 1-Tank Storage: Prototype at Fraunhofer ISE
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Purposes of energy storage

 Solar radiation is a fluctuating source of energy 

 Solar energy is not always available when needed

 Solar energy is not always needed when available 

 Energy storage can synchronize energy supply and demand

 Dispatchability  Energy on demand

 Higher revenues by load management

 Power production can be forecasted

 Stabilize operation of power block, especially of the turbine (e.g. clouds)

 Increase power block utilization (capacity factor, CF)

 𝐶𝐹 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑁𝑎𝑚𝑒𝑝𝑙𝑎𝑡𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗24 ℎ ∗365 𝑑
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Capacity factors of CSP

CSP provides wide range of plant types with different CF

Andasol 40%
150 MW, 7.5 FLH

Solana 43%
280 MW, 6 FLH

Gemasolar 75%
20 MW, 15 FLH

Shams 24%
100 MW w/o storage

Ivanpah 33%
377 MW w/o storage

Hydro world avrg.

44%

Coal avrg.

63%

PV max ~20% Nuclear

up to 90%
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PE2: Linear Fresnel – Direct Steam Generation

Quelle: NOVATEC, SolarPACES 2014
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PE2 without Storage, 30 MWel:

Power production on a day with volatile irradiance

Quelle: Selig, SolarPACES 2014

Power

Power
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Higher revenues by load management

Production is shifted to high demand & high tariff times 
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Some defintions:

Storage Capacity and Full Load Hours (FLH)

 Storage capacity: Amount of thermal energy stored

 Q = mass * specific heat capacity * temperature difference (in case of a 

sensible storage)

 Equivalent storage capacity: Amount of usable energy (electricity) stored

 Capacity in terms of CSP usually stated in MWh or GWh

 Full load hours (FLH) = Duration in which the plant can deliver a “full” power 

output  through storage (nameplate capacity of turbine)
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Increase of full load hours by storage

© DLR

 Increase of power block 

utilization with storage

 Overall efficiency of the plant 

increases due to power 

conversion at nominal load 

of turbine

 Load management according 

to demand is possible          

 higher revenues
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Solar multiple (SM)
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bot graphics edited from [1]

Ratio of thermal receiver power (Pth,rec) at 

design point to the nominal inlet power of

the power block (Pth,cyc)

Pth,cyc

Pth,rec

SM = 
𝑃𝑡ℎ,𝑟𝑒𝑐

𝑃𝑡ℎ,𝑐𝑦𝑐𝑙𝑒



© Fraunhofer ISE 

14

Solar multiple
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Classification of storage options

 Sensible heat storage

 Steam, Oil

 Concrete

 Molten salt

 Iron, Rocks, Sand in combination with oil

 Liquid sodium

 Latent heat storage

 Phase Change Materials (PCM – e.g. salt nitrates)

 Chemical storage
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SENSIBLE HEAT STORAGE

 Introduction

 Sensible heat storage

 Types of sensible heat storage

 Steam accumulator

 2-Tank indirect

 2-Tank direct

 Cost comparison

 Realized solar thermal plants with storage (examples)

 1-Tank thermal energy storage with stratification 

 1-Tank Storage: Prototype at Fraunhofer ISE
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Overview of sensible energy storage

𝑄1,2 = 𝑚 ∗ න
1

2

𝑐 𝑇 𝑑𝑇

© Lovegrove [2]
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Sensible Heat Storage

Steam Accumulator „Ruths storage“ 

 Only small capacity

 Short term storage

 Pressurized water as 

storage medium

 “Low pressure”

 Cost intensive 

© Lovegrove [2]
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Sensible Heat

Steam Accumulator

 Example: PS10 (Spain)

 11 MWel

 50 bar / 285 °C

 Storage can run the power block

for 30 Minutes
http://www.trec-uk.org.uk/images/heat_storage_tanks.jpg

https://en.wikipedia.org/wiki/PS10_solar_power_plant
© Lovegrove [2]
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Sensible Heat 

Two-tank indirect molten salt storage

 Most commonly built 

system

 HTF in solar field and 

storage medium differ

 Over-dimensioning of 

solar field, surplus 

energy is stored during 

the day

 solar multiple > 1

© Lovegrove [2]

Power Block

Solar field

Heat exchangerThermal storage
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Sensible Heat 

Two-tank indirect molten salt storage

 Example: Andasol 3 

(Spain)

 Electrical power: 50 MW 

 Tank diameter: 38.5 m

 Height: 14 m

 Contents: about 28,000 m³ 

molten salt

 Temperatures: 

cold 292°C, hot 386°C

 Δt = 94 K

 7.5 full load hours
© renewableenergyfocus.com
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Sensible Heat 

Two-tank indirect molten salt storage

 Example: Andasol 3 

(Spain)

Dinter, SolarPACES 2013
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Sensible Heat 

Two-tank indirect molten salt storage

 Example 2: Solana (USA)

 Electrical power: 280 MW (net)

 Capacity factor: 43 %

 6 Full load hours

 Storage capacity: 1680 MWhel

 ≈ 47 times the capacity of the 

biggest electrical storage 

(December 2016) 

© Abengoa
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Evolution of molten salt storages

The path to lower cost

Two-tank indirect

 Temperature loss due two 

double HX

 Temp. limited by oil

 One tank always empty

 Andasol

Two-tank direct

 Molten salt also in 

collector

 Higher temp. possible

 Less T loss & equipment

 Gemasolar

Single thermocline tank

 One tank less

 Possible integration of HX

 Additional use of filler 

material reduces amount of 

salt

 Testing / Pilots

GG G
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Sensible Heat 

Two-tank direct molten salt storage

 Trend towards direct 

storage

 Heat transfer fluid = 

Storage medium

  No additional heat 

exchanger needed

 Cost reduction, less 

equipment

 Reduction of heat 

losses

© Lovegrove

Power Block

Solar field

Thermal storage
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Sensible Heat 

Two-tank direct molten 

salt storage

 Example: Gemasolar (Spain)

 Storage capacity: 15 FLH

 2650 heliostats

 Rated electrical power: 19.9 MW

 Capacity factor: 75 %

 Can produce electricity over 24 

hours a day (during several 

month a year)

http://www.torresolenergy.com

Source: Wikipedia
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Sensible Heat 

Two-tank direct molten salt storage

Relloso, SolarPACES 2014

 Example: Gemasolar (Spain)
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Direct vs. indirect storage
Solar field Back-up heater Storage Power block
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Different storages for different CSP systems

 There is no single type of storage solution which is available for all different 
CSP systems 
 storage material depends on operation temperature

Oil parabolic trough Two-tank molten salt storage

Solid material storage

Single tank thermocline molten salt storage

Direct steam generation parabolic 

trough / Linear Fresnel / Tower

Steam storage

PCM storage

Solar tower with salt receiver Two-tank molten salt storage

Single tank thermocline molten salt storage

Solar tower with air receiver Cowper storage (regenerator)

Packed bed storage like a sand storage

Scheffler Dish Solid block storage
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Efficiency of sensible thermal energy storage

Molten salt energy storage

 Is rather a short term storage (15 hours)

 Large quantities of storage medium is required

 Nearly no losses in the storage itself

 Thermal losses due to the piping system, heat exchanger

 Overall efficiency > 90 %
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Thermal Energy Storage: Summary

 CSP is the only solar technology that has large scale storage already today

 Implementation of storage leads to stable electricity production

 Up to 24 hours a day 

 Trend to direct storage systems

 Thermal energy storage makes CSP-plants dispatchable

 Electricity on demand

 Thermal storage systems will become more efficient 



© Fraunhofer ISE 

33

Evolution of molten salt storages

The path to lower cost

Two-tank indirect

 Temperature loss due two 

double HX

 Temp. limited by oil

 One tank always empty

 Andasol

Two-tank direct

 Molten salt also in 

collector

 Higher temp. possible

 Less T loss & equipment

 Gemasolar

Single thermocline tank

 One tank less

 Possible integration of HX

 Additional use of filler 

material reduces amount of 

salt

 Testing / Pilots

GG G
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1-TANK THERMAL ENERGY STORAGE

 Introduction

 Sensible heat storage

 1-Tank thermal energy storage with stratification 

 Basics

 Example 

 Operational characteristic 

 1-Tank Storage: Prototype at Fraunhofer ISE
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Possible Options for the Future – Thermocline Storage

 Molten salt is used as heat transfer fluid in the solar collectors as well as 

storage fluid in the TES

 Only ONE tank is used – system is well known from domestic solar water 

heating systems

 Relies on thermal buoyancy

 Saves costs for 2nd storage and one oil/molten salt heat exchanger

©DLR
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One Tank Molten Salt Storage With Stratification

 Features

 Separation due to density

difference

 Constant tank filling level

 More than 2 temperatures

 Conventional design

 Pumping with shaft untill the

bottom of the tank

 External steam generator

© Sandia

hot (550 °C)

cold (290 °C)

thermocline
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One Tank Storage: Basics 

 Separation of hot and cold fluid due to density difference

 Water: 20 °C – 90 °C  998 kg m-3 – 965 kg m-3
 Δρ = 3.31%

 Salt: 290 °C – 550 °C  1905 kg m-3 – 1740 kg m-3
 Δρ = 8.66%

 The better the separation, the better the efficiency

 Parasitic effects for stratification

 Mixing at the inlet (without filling material)

 Heat exchange between molten salt and filling material
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One Tank Storage: Examples

 Sandia, USA (2001): 2,3 MWh

 Tmax 390 °C

 Filling material: Stone-Sand-

Mixture

 Sener, Spain (2011): 24 MWh

 Tmax 390 °C

 With separation barrier

 ENEA, Italy (2012): 1,2 MWh

 Tmax 520 °C

 Internal steam generator

© Sandia

© ENEA

© Sener
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One Tank Storage: Operational Characteristics

 Behavior depends on stratification

 Discharge power lowers at the end of a cycle
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1-TANK THERMAL ENERGY STORAGE

 Introduction

 Sensible heat storage

 1-Tank thermal energy storage with stratification 

 1-Tank Storage: Prototype at Fraunhofer ISE

 System Description

 Qualitative Evaluation

 Method

 Result

 Energetic Evaluation

 Charging of Storage 

 Discharging of Storage

 Conclusion and Outlook
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One Tank Storage: Prototype at ISE

 Stratified storage

 Height 1,3 m / diameter 0,6 m

 Capacity: 72 kWh

 Temeperature: 290 °C – 550 °C

 Heating and cooling power 60 kW

 Charge- and discharge experiments:

 Temperature difference

 Mass flow

 Next step: Filling material
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Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Shahab Rohani

www.ise.fraunhofer.de

shahab.rohani@ise.fraunhofer.de
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Presentation Outline

1. Introduction 

2. System Description

3. Qualitative Evaluation

a) Method

b) Result

4. Energetic Evaluation

a) Charging of Storage 

b) Discharging of Storage

5. Conclusion and Outlook
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Benefits of Single-Tank TES

»Fraunhofer-Linien«

www.stage-ste.eu

Only one tank

 Less material use

 Reduction of HTF volume

 Lower floor area demand

 Cold tank foundation

 Lower heat losses 

 Reduced dead volume

Constant fill level

 Integration of filler material

 Short-shaft pumps

 Easier tank ullage gas management

© Yang© SolarReserve © Infratec

Drawback: Mixing of hot and cold layer Loss of exergy

 Recent studies show that the CAPEX of storage 

systems could be reduced by up to 35 %
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System Description

www.stage-ste.eu
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System Description
Main Features

www.stage-ste.eu

 

electric 
heater

pump
tank

storage
tank

drainage tank

cooler

Tmax: 600 °C

V: 4 m3 h-1

Tmax: 550 °C

Q: 60 kW

control valves DN 25

shut-off

valves DN 25

Q: 60 kW

manual

valves DN 25

V: 0.6 m³

pmax: 0.5 bar

NaNO3/KNO3  „Solar Salt“

60/40 wt.-%
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System Description
Main Features

www.stage-ste.eu
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storage
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electric 
heater

pump
tank

storage
tank

drainage tank

cooler

 Operating modes

− Filling

− Attemperation

− Charging

− Discharging

− Draining
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System Description
Thermocline Tank

15 x thermocouples (TC)

for measurement

of stratification

double-plate radial diffuser 

Ainlet: 0.0051 m2

uinlet: 0.02 m s-1 (@ 0.4 m3 h-1)

single-plate radial 

diffuser

molten saltheating cable wall

secondary/main

insulation

primary

insulation

V: 0.4 m³

D: 0.6 m

H: 1.3 m

Q: 72 kWh

TC

www.stage-ste.eu

Unfavorable surface-area-to-

volume-ratio -> prone to edge

effects
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Qualitative Evaluation

Method

www.stage-ste.eu
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Qualitative Evaluation
Method to Measure the Thickness of the Thermocline

 Temperature measured by the thermocouples gives indication about the separation of cold 

and hot fluid  Stratification

 Only measurement 

values at certain vertical 

locations available

 The position of the 

thermocline changes

 The derived thickness varies

periodically, despite the fact that 

the “real” thickness does not

change in this way

 Determination of thermocline thickness based on experimental data 

 more complex than from numerical data / simulation models

 interpolation for thermocline thickness calculation at individual positions

Thot

Tcold

Thot

Tcold

Tinter

www.stage-ste.eu
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Qualitative Evaluation
Method to Measure the Thickness of the Thermocline

Thermocline thickness

www.stage-ste.eu
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Qualitative Evaluation
Method to Measure the Thickness of the Thermocline

Thot

„MAX“

Tcold

„MIN“

TC1

TC2

TC15

5 K tolerance

Lower and upper threshold

temperatures

Thermocline

Thickness

≈ 166 mm

„LT“ „UT“

Maximum difference

≈ 100 K

„Upper boundary“

„Lower boundary“

www.stage-ste.eu
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Qualitative Evaluation
Method to Measure the Thickness of the Thermocline

Thot

„MAX“

Tcold

„MIN“

TC1

TC2

TC15

10 K tolerance

Lower and upper threshold

temperatures

Thermocline

Thickness

≈ 139 mm

„LT“ „UT“

„Upper boundary“

„Lower boundary“

www.stage-ste.eu
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Qualitative Evaluation

Results

www.stage-ste.eu
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Qualitative Evaluation
Measurement Result of Thermocline Thickness

 TC thickness varies between 14 and 20 cm for 5 K tolerance 

(blue dotted line ---)

 .. and 9 and 15 cm for 10 K tolerance (green dotted line ---)

  Thermocline thickness increases about 6 cm

Δ ≈ 6 cm

Δ ≈ 6 cm

Timestep 1

Timestep 2

www.stage-ste.eu
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Energetic Evaluation

www.stage-ste.eu
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Energetic Evaluation
Approach

 Thermal power for charging and discharging of the storage by mass flow as well as inlet and 

outlet temperature

 Introduction of a boundary condition for charging / discharging:

“Theoretical threshold temperature”

 Storage charging / discharging limited to outlet temperature of the storage

 Charging: Maximum inlet temperature of the solar field

 Discharging: Minimum inlet temperature of the power block

 Remaining heat could be used (e.g. for freeze protection or preheating)

 Comparison of actual storage capacity (charging and discharging) with theoretical values

www.stage-ste.eu
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Energetic Evaluation
Charging of Storage

www.stage-ste.eu



18Lessons learned from a lab-scale thermocline storage| Shahab Rohani | 09.09.2019

Energetic Evaluation
Charging of Storage

 Outlet temperature remains rather constant

www.stage-ste.eu
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Energetic Evaluation
Discharging of Storage

Threshold outlet

temperature

www.stage-ste.eu
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Conclusion &

Outlook

www.stage-ste.eu
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Lessons Learned

 Heat tracing support for charging process

 Effect of heat loss during charging

 Good heat tracing equipment

is essential in molten salt

systems

 

electric 
heater

pump
tank

storage
tank

drainage tank

cooler

heat tracing support

www.stage-ste.eu
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Conclusion

 Demonstration of a stable outlet temperature of a thermocline storage with molten salt

  Good stratification 

 However, thermocline zone increases during charging / discharging

 Design of diffusor and wall temperature management (for small prototype vessels) crucial 

for stratification

 Introduction of a method to determine the thickness of the thermocline zone at variable height 

positions despite fixed measurement points

www.stage-ste.eu



23Lessons learned from a lab-scale thermocline storage| Shahab Rohani | 09.09.2019

Outlook

 Compare introduced evaluation method with other 

approaches and numerical models 

 refine approach

 Performance evaluation of consecutive charging / 

discharging cycles 

 Increase of maximum temperature and thus the 

temperature difference

 Investigation of different salt mixtures

 Introduction and analysis of different filler 

materials using a packed-bed storage tank
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